• Laser & Optoelectronics Progress
  • Vol. 58, Issue 19, 1929002 (2021)
Lanfeng Huang1, Yongjun Li1、*, Shanghong Zhao1, Tao Lin1, Taijiang Zhang2, and Haiyan Zhao1
Author Affiliations
  • 1Information and Navigation College, Air Force Engineering University, Xi'an , Shaanxi 710077, China
  • 2Unit 75835 of the People's Liberation Army of China, Guangzhou , Guangdong 510500, China
  • show less
    DOI: 10.3788/LOP202158.1929002 Cite this Article Set citation alerts
    Lanfeng Huang, Yongjun Li, Shanghong Zhao, Tao Lin, Taijiang Zhang, Haiyan Zhao. Microwave Instantaneous Frequency Measurement Based on Single Lightpath Polarization Multiplexing[J]. Laser & Optoelectronics Progress, 2021, 58(19): 1929002 Copy Citation Text show less
    References

    [1] Wang Y, Chi H, Zhang X M et al. Photonic approach for microwave spectral analysis based on Fourier cosine transform[J]. Optics Letters, 36, 3897-3899(2011).

    [2] Jiang H Y, Marpaung D, Pagani M et al. Wide-range, high-precision multiple microwave frequency measurement using a chip-based photonic Brillouin filter[J]. Optica, 3, 30-34(2016).

    [3] Tu Z Y, Wen A J, Gao Y S et al. A photonic technique for instantaneous microwave frequency measurement utilizing a phase modulator[J]. IEEE Photonics Technology Letters, 28, 2795-2798(2016).

    [4] Li X, Wen A, Ma X et al. Photonic microwave frequency measurement with a tunable range based on a dual-polarization modulator[J]. Applied Optics, 55, 8727-8731(2016).

    [5] Zou X H, Pan W, Luo B et al. Dispersion-induced-loss-independent photonic instantaneous frequency measurement using remote-fiber-based tunable microwave filter[J]. IEEE Photonics Technology Letters, 22, 1090-1092(2010).

    [6] Duan Y H, Chen L, Zhou H D et al. Ultrafast electrical spectrum analyzer based on all-optical Fourier transform and temporal magnification[J]. Optics Express, 25, 7520-7529(2017).

    [7] Wiberg A O J, Esman D J, Liu L et al. Coherent filterless wideband microwave/millimeter-wave channelizer based on broadband parametric mixers[J]. Journal of Lightwave Technology, 32, 3609-3617(2014).

    [8] Zou X H, Li W Z, Pan W et al. Photonic-assisted microwave channelizer with improved channel characteristics based on spectrum-controlled stimulated Brillouin scattering[J]. IEEE Transactions on Microwave Theory and Techniques, 61, 3470-3478(2013).

    [9] Wang D, Du C, Yang Y C et al. Wide-range, high-accuracy multiple microwave frequency measurement by frequency-to-phase-slope mapping[J]. Optics & Laser Technology, 123, 105895(2020).

    [10] Zou X T, Xu S F, Li S J et al. Optimization of the Brillouin instantaneous frequency measurement using convolutional neural networks[J]. Optics Letters, 44, 5723-5726(2019).

    [11] Zou W W, Long X, Li X et al. Brillouin instantaneous frequency measurement with an arbitrary response for potential real-time implementation[J]. Optics Letters, 44, 2045-2048(2019).

    [12] Jiao W T, You K, Sun J Q. Multiple microwave frequency measurement with improved resolution based on stimulated Brillouin scattering and nonlinear fitting[J]. IEEE Photonics Journal, 11, 1-12(2019).

    [13] Liu J, Shi T, Chen Y. High-accuracy multiple microwave frequency measurement with two-step accuracy improvement based on stimulated Brillouin scattering and frequency-to-time mapping[J]. Journal of Lightwave Technology, 39, 2023-2032(2020).

    [14] Long X, Zou W W, Chen J P. Broadband instantaneous frequency measurement based on stimulated Brillouin scattering[J]. Optics Express, 25, 2206-2214(2017).

    [15] Pan L B, Jiang L K, Wang Y et al. Instantaneous microwave frequency measurement with ultra-wide range and high-resolution based on stimulated Brillouin scattering[J]. Acta Photonica Sinica, 46, 1226001(2017).

    [16] Li Y Q, An Q, Li X J et al. High-accuracy Brillouin frequency shift measurement system based on stimulated Brillouin scattering phase shift[J]. Optical Engineering, 56, 056102(2017).

    [17] Zhu Z, Merklein M, Choi D Y et al. Highly sensitive, broadband microwave frequency identification using a chip-based Brillouin optoelectronic oscillator[J]. Optics Express, 27, 12855-12868(2019).

    [18] Li H, Zhao S H, Wu J X et al. Generation of reconfigurable frequency-conversion signals with full-range phase shift based on microwave photonics[J]. Acta Optica Sinica, 40, 0825001(2020).

    [19] Xiao Y C, Guo J, Wu K et al. Multiple microwave frequencies measurement based on stimulated Brillouin scattering with improved measurement range[J]. Optics Express, 21, 31740-31750(2013).

    [20] Zhang J L, Dai Z Y, Liu Y Z. Latest development of high speed LiNbO3 electro-optic modulator[J]. Semiconductor Optoelectronics, 27, 508-512(2006).

    [21] Wu K, Li J Q, Zhang Y D et al. Multiple microwave frequencies measurement based on stimulated Brillouin scattering with ultra-wide range[J]. Optik-International Journal for Light and Electron Optics, 126, 1935-1940(2015).

    [22] Li W, Zhu N H, Wang L X. Brillouin-assisted microwave frequency measurement with adjustable measurement range and resolution[J]. Optics Letters, 37, 166-168(2012).

    [23] Xin G Y, Zou W W, Long X et al. Polarization optimization for instantaneous frequency measurements based on stimulated Brillouin scattering[J]. Acta Optica Sinica, 39, 0507001(2019).

    [24] Yang X F, Shi J Y, Ma P J et al. Design of the S band 6 bits high precision phase shifter[J]. Journal of Xidian University, 41, 125-129(2014).

    [25] Li H, Zhao S H, Yu L N et al. Generation of multichannel frequency conversion signal with full range phase shift based on PDM-DMZM[J]. Chinese Journal of Lasers, 47, 1205004(2020).

    [26] Li X, Zhao S H, Pan S L et al. Generation of a frequency-quadrupled phase-coded signal using optical carrier phase shifting and balanced detection[J]. Applied Optics, 56, 1151-1156(2017).

    Lanfeng Huang, Yongjun Li, Shanghong Zhao, Tao Lin, Taijiang Zhang, Haiyan Zhao. Microwave Instantaneous Frequency Measurement Based on Single Lightpath Polarization Multiplexing[J]. Laser & Optoelectronics Progress, 2021, 58(19): 1929002
    Download Citation