• Opto-Electronic Engineering
  • Vol. 44, Issue 3, 319 (2017)
[in Chinese]1、2, [in Chinese]1, [in Chinese]1, [in Chinese]2, and [in Chinese]1、*
Author Affiliations
  • 1State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
  • 2Key Laboratory of Optoelectronic Technology and System, Ministry of Education, Chongqing University, Chongqing 400044, China
  • show less
    DOI: 10.3969/j.issn.1003-501x.2017.03.006 Cite this Article
    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Symmetry breaking of photonic spin-orbit interactions in metasurfaces[J]. Opto-Electronic Engineering, 2017, 44(3): 319 Copy Citation Text show less
    References

    [1] Liberman V S, Zel’dovich B Y. Spin-orbit interaction of a photon in an inhomogeneous medium[J]. Physical Review A, 1992, 46(8): 5199–5207.

    [2] Allen L, Barnett S M, Padgett M J. Optical angular momentum [M]. Boca Raton, FL: CRC Press, 2003.

    [3] Mair A, Vaziri A, Weihs G, et al. Entanglement of the orbital angular momentum states of photons[J]. Nature, 2001, 412(6844): 313–316.

    [4] Pu Mingbo, Ma Xiaoliang, Li Xiong, et al. Merging plasmonics and metamaterials by two-dimensional subwavelength structures[J]. Journal of Materials Chemistry C, 2017: 10.1039/C7TC00440K.

    [5] Luo Xiangang. Principles of electromagnetic waves in metasurfaces[J]. Science China Physics, Mechanics & Astronomy, 2015, 58(9): 594201.

    [6] Luo Jun, Zeng Bo, Wang Changtao, et al. Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography[J]. Nanoscale, 2015, 7(44): 18805– 18812.

    [7] Tang Dongliang, Wang Changtao, Zhao Zeyu, et al. Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing[J]. Laser & Photonics Reviews, 2015, 9(6): 713–719.

    [8] Zhao Zeyu, Pu Mingbo, Gao Hui, et al. Multispectral optical metasurfaces enabled by achromatic phase transition[J]. Scientific Reports, 2015, 5: 15781.

    [9] Khorasaninejad M, Chen Weiting, Devlin R C, et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290): 1190–1194.

    [10] Ma Xiaoliang, Pu Mingbo, Li Xiong, et al. A planar chiral meta-surface for optical vortex generation and focusing[J]. Scientific Reports, 2014, 5: 10365.

    [11] Pu Mingbo, Li Xiong, Ma Xiaoliang, et al. Catenary optics for achromatic generation of perfect optical angular momentum[J]. Science Advances, 2015, 1(9): e1500396.

    [12] Guo Yinghui, Yan Lianshan, Pan Wei, et al. Generation and manipulation of orbital angular momentum by all-dielectric metasurfaces[J]. Plasmonics, 2016, 11(1): 337–344.

    [13] Jin Jinjin, Pu Mingbo, Wang Yanqin, et al. Multi-channel vortex beam generation by simultaneous amplitude and phase modulation with two-dimensional metamaterial[J]. Advanced Materials Technologies, 2017, 2(2): 1600201.

    [14] Guo Yinghui, Pu Mingbo, Zhao Zeyu, et al. Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation [J]. ACS Photonics, 2016, 3(11): 2022–2029.

    [15] Pu Mingbo, Chen Po, Wang Yanqin, et al. Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation[J]. Applied Physics Letters, 2013, 102(13): 131906.

    [16] Guo Yinghui, Wang Yanqin, Pu Mingbo, et al. Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion[J]. Scientific Reports, 2014, 5: 8434.

    [17] Wen Dandan, Yue Fuyong, Li Guixin, et al. Helicity multiplexed broadband metasurface holograms[J]. Nature Communications, 2015, 6: 8241.

    [18] Zhang Xiaohu, Jin Jinjin, Pu Mingbo, et al. Ultrahigh-capacity dynamic holographic displays via anisotropic nanoholes[J]. Nanoscale, 2017, 9(4): 1409–1415.

    [19] Li Xiong, Chen Lianwei, Li Yang, et al. Multicolor 3D meta-holography by broadband plasmonic modulation[J]. Science Advances, 2016, 2(11): e1601102.

    [20] Pu Mingbo, Zhao Zeyu, Wang Yanqin, et al. Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping[J]. Scientific Reports, 2014, 5: 9822.

    [21] Guo Yinghui, Yan Lianshan, Pan Wei, et al. Scattering engineering in continuously shaped metasurface: an approach for electromagnetic illusion[J]. Scientific Reports, 2016, 6: 30154.

    [22] Pancharatnam S. Generalized theory of interference, and its applications. Part I. Coherent pencils[J]. Proceedings of the Indian Academy of Sciences-Section A, 1956, 44(5): 247–262.

    [23] Berry M V. Quantal phase factors accompanying adiabatic changes[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1984, 392(1802): 45–57.

    [24] Kang Ming, Feng Tianhua, Wang Huitian, et al. Wave front engineering from an array of thin aperture antennas[J]. Optics Express, 2012, 20(14): 15882–15890.

    [25] Khorasaninejad M, Crozier K B. Silicon nanofin grating as a miniature chirality-distinguishing beam-splitter[J]. Nature Communications, 2014, 5: 5386.

    [26] Lin Dianmin, Fan Pengyu, Hasman E, et al. Dielectric gradient metasurface optical elements[J]. Science, 2014, 345(6194): 298–302.

    [27] Luo Xiangang, Pu Mingbo, Li Xiong, et al. Broadband spin Hall effect of light in single nanoapertures[J]. Light: Science & Applications, 2017, 6: e16276.

    [28] Arbabi A, Horie Y, Bagheri M, et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nature Nanotechnology, 2015, 10(11): 937–943.

    [29] Ciattoni A, Crosignani B, Di Porto P. Vectorial free-space optical propagation: a simple approach for generating all-order nonparaxial corrections[J]. Optics Communications, 2000, 177(1–6): 9–13.

    [30] Gerchberg R W, Saxton W O. A practical algorithm for the determination of phase from image and diffraction plane pictures[J]. Optik, 1972, 35(2): 237–246.

    [31] Valle P J, Cagigal M P. Analytic design of multiple-axis, multifocal diffractive lenses[J]. Optics Letters, 2012, 37(6): 1121–1123.

    [32] de Gracia P, Dorronsoro C, Marcos S. Multiple zone multifocal phase designs[J]. Optics Letters, 2013, 38(18): 3526–3529.

    [33] Chen Xianzhong, Chen Ming, Mehmood M Q, et al. Longitudinal multifoci metalens for circularly polarized light[J]. Advanced Optical Materials, 2015, 3(9): 1201–1206.

    [34] Wang Wei, Guo Zhongyi, Zhou Keya, et al. Polarization- independent longitudinal multi-focusing metalens[J]. Optics Express, 2015, 23(23): 29855–29866.

    [35] Khorasaninejad M, Chen W T, Zhu A Y, et al. Multispectral chiral imaging with a metalens[J]. Nano Letters, 2016, 16(7): 4595– 4600.

    [36] Zhu Qiaofen, Wang Dayong, Zheng Xianhua, et al. Optical lens design based on metallic nanoslits with variant widths[J]. Applied Optics, 2011, 50(13): 1879–1883.

    [37] Zhu Qiaofen, Ye Jiasheng, Wang Dayong, et al. Optimal design of SPP-based metallic nanoaperture optical elements by using Yang-Gu algorithm[J]. Optics Express, 2011, 19(10): 9512– 9522.

    [38] Pang Hui, Gao Hongtao, Deng Qiling, et al. Multi-focus plasmonic lens design based on holography[J]. Optics Express, 2013, 21(16): 18689–18696.

    [39] Lavery M P J, Speirits F C, Barnett S M, et al. Detection of a spinning object using light’s orbital angular momentum[J]. Science, 2013, 341(6145): 537–540.

    [40] Bozinovic N, Yue Yang, Ren Yongxiong, et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers[J]. Science, 2013, 340(6140): 1545–1548.

    [41] Franke‐Arnold S, Allen L, Padgett M. Advances in optical angular momentum[J]. Laser & Photonics Reviews, 2008, 2(4): 299–313.

    [42] Zhang Fei, Yu Honglin, Fang Jiawen, et al. Efficient generation and tight focusing of radially polarized beam from linearly polarized beam with all-dielectric metasurface[J]. Optics Express, 2016, 24(6): 6656–6664.

    [43] Mueller J P B, Rubin N A, Devlin R C, et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization[J]. Physical Review Letters, 2017, 118(11): 113901.

    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Symmetry breaking of photonic spin-orbit interactions in metasurfaces[J]. Opto-Electronic Engineering, 2017, 44(3): 319
    Download Citation