• Infrared and Laser Engineering
  • Vol. 49, Issue 12, 20201057 (2020)
Huafeng Wang1, Ke Sun2, Shengzhi Sun3, and Jianrong Qiu2、*
Author Affiliations
  • 1Ningbo University of Finance & Economics, Ningbo 315175, China
  • 2College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
  • 3The Research Institute of Advanced Technologies, Ningbo University, Ningbo 315211, China
  • show less
    DOI: 10.3788/IRLA20201057 Cite this Article
    Huafeng Wang, Ke Sun, Shengzhi Sun, Jianrong Qiu. Femtosecond laser induced microstructures in diamond and applications (Invited)[J]. Infrared and Laser Engineering, 2020, 49(12): 20201057 Copy Citation Text show less
    References

    [1] C Kurtsiefer, S Mayer, P Zarda. Stable solid-state source of single photons. Physical Review Letters, 85, 290-293(2000).

    [2] A Sipahigil, M L Goldman, E Togan. Quantum interference of single photons from remote nitrogen-vacancy centers in diamond. Physical Review Letters, 108, 143601(2012).

    [3] V Bharadwaj, O Jedrkiewicz, J P Hadden. Femtosecond laser written photonic and microfluidic circuits in diamond. Journal of Physics: Photonics, 1, 022001(2019).

    [4] F Lenzini, N Gruhler, N Walter. Diamond as a platform for integrated quantum photonics. Advanced Quantum Technologies, 1, 1800061(2018).

    [5] H R Phillip, Taft?E?A. Kramers-Kronig analysis of reflectance data  for  diamond. Physical Review, 136, 1445-1448(1964).

    [6] B J M Hausmann, I Bulu, V Venkataraman. Diamond nonlinear photonics. Nature Photonics, 8, 369-374(2014).

    [7] I Aharonovich, E Neu. Diamond nanophotonics. Advanced Optical Materials, 2, 911-928(2014).

    [8] J N Becker, C Becher. Coherence properties and quantum control of silicon vacancy color centers in diamond. Physica Status Solidi a-Applications and Materials Science, 214, 1700586(2017).

    [9] J N Becker, J Goerlitz, C Arend. Ultrafast all-optical coherent control of single silicon vacancy colour centres in diamond. Nature Communications, 7, 13512(2016).

    [10] B Khanaliloo, H Jayakumar, A C Hryciw. Single-crystal diamond nanobeam waveguide optomechanics. Physical Review X, 5, 041051(2015).

    [11] M J Burek, Y Chu, M S Z Liddy. High quality-factor optical nanocavities in bulk single-crystal diamond. Nature Communications, 5, 5718(2014).

    [12] S Lagomarsino, P Olivero, F Bosia. Evidence of light guiding in ion-implanted diamond. Physical Review Letters, 105, 233903(2010).

    [13] D M Toyli, C D Weis, G D Fuchs. Chip-scale nanofabrication of single spins and spin arrays in diamond. Nano Letters, 10, 3168-3172(2010).

    [14] Sotillo B, Bharadwaj V, Fernez T T, et al. Femtosecond laser written diamond photonics[J]. 2018, .

    [15] E A Ekimov, M V Kondrin. Vacancy-impurity centers in diamond: Prospects for synthesis and applications. Physics-Uspekhi, 60, 539-558(2017).

    [16] S Prawer, C H Su, A D Greentree. Diamond-based single-photon emitters. Reports on Progress in Physics, 74, 76501-76500(2011).

    [17] T Ishikawa, K M C Fu, C Santori. Optical and spin coherence properties of nitrogen-vacancy centers placed in a 100 nm thick isotopically purified diamond layer. Nano Letters, 12, 2083-2087(2012).

    [18] B C Rose, C D Weis, A M Tyryshkin. Spin coherence and 14N ESEEM effects of nitrogen-vacancy centers in diamond with X-band pulsed ESR. Diamond and Related Materials, 72, 32-40(2017).

    [19] G Kucsko, S Choi, J Choi. Critical thermalization of a disordered dipolar spin system in diamond. Physical Review Letters, 121, 023601(2018).

    [20] D Delgado, R Vila. Statistical Molecular Dynamics study of displacement energies in diamond. Journal of Nuclear Materials, 419, 32-38(2011).

    [21] M Neff, T V Kononenko, S M Pimenov. Femtosecond laser writing of buried graphitic structures in bulk diamond. Applied Physics A Materials Science & Processing, 97, 543(2009).

    [22] T Yamamoto, T Watanabe S Umeda. WatExtending spin coherence times of diamond qubits by high-temperature annealing. Physical Review B, 88, 075206(2013).

    [23] S M Eaton, J P Hadden, V Bharadwaj. Quantum micro–nano devices fabricated in diamond by femtosecond laser and ion irradiation. Advanced Quantum Technologies, 2, 1900006(2019).

    [24] R Schirhagl, K Chang, M Loretz. Nitrogen-vacancy centers in diamond: Nanoscale sensors for physics and biology. Annual Review of Physical Chemistry, 65, 83-105(2014).

    [25] V V Kononenko, I I Vlasov, V M Gololobov. Nitrogen-vacancy defects in diamond produced by femtosecond laser nanoablation technique. Applied Physics Letters, 111, 1-5(2017).

    [26] Y Liu, G Chen, M Song. Fabrication of nitrogen vacancy color centers by femtosecond pulse laser illumination. Optics Express, 21, 12843-12848(2013).

    [27] Y Rong, K Cheng, Z Ju. Bright near-surface silicon vacancy centers in diamond fabricated by femtosecond laser ablation. Optics Letters, 44, 3793-3796(2019).

    [28] S Lagomarsino, S Sciortino, B Obreshkov. Photoionization of monocrystalline CVD diamond irradiated with ultrashort intense laser pulse. Physical Review B, 93, 085128(2016).

    [29] Y C Chen, P S Salter, S Knauer. Laser writing of coherent colour centres in diamond. Nature Photonics, 11, 77-80(2017).

    [30] Y-C Chen, B Griffiths, L Weng. Laser writing of individual nitrogen-vacancy defects in diamond with near-unity yield. Optica, 6, 662(2019).

    [31] B Sotillo, V Bharadwaj, J P Hadden. Diamond photonics platform enabled by femtosecond laser writing. Scientific Reports, 6, 35566(2016).

    [32] B Sotillo, V Bharadwaj, J Hadden. Visible to infrared diamond photonics enabled by focused femtosecond laser pulses. Micromachines, 8, 60(2017).

    [33] B Sotillo, A Chiappini, V Bharadwaj. Polarized micro-Raman studies of femtosecond laser written stress-induced optical waveguides in diamond. Applied Physics Letters, 112, 031109(2018).

    [34] Y Shimotsuma. Three-dimensional nanostructuring of transparent materials by the femtosecond laser irradiation. Journal of Laser Micro, 1, 181-184(2006).

    [35] R D Simmonds, P S Salter, A Jesacher. Three dimensional laser microfabrication in diamond using a dual adaptive optics system. Optics Express, 19, 24122-24128(2011).

    [36] Y Sun, J Dou, M Xu. Research on the mechanism of micromachining of CVD diamond by femtosecond laser. Ferroelectrics, 549, 266-275(2019).

    [37] M J Booth, G T Forcolin, V Grilj. Study of cubic and hexagonal cell geometries of a 3D diamond detector with a proton micro-beam. Diamond and Related Materials, 77, 137-145(2017).

    [38] A. Murphy S., M Booth, L Li. Laser processing in 3D diamond detectors. Nuclear Inst & Methods in Physics Research A, 845, 136-138(2017).

    [39] A A Khomich, K K Ashikkalieva, A P Bolshakov. Very long laser-induced graphitic pillars buried in single-crystal CVD-diamond for 3D detectors realization. Diamond & Related Materials, 90, 84-92(2018).

    [40] V Bharadwaj, Y Wang, T T Fernandez. Femtosecond laser written diamond waveguides: A step towards integrated photonics in the far infrared. Optical Materials, 85, 183-185(2018).

    [41] H Hanafi, S Kroesen, G Lewes-Malandrakis. Polycrystalline diamond photonic waveguides realized by femtosecond laser lithography. Optical Materials Express, 9, 003109(2019).

    [42] A Courvoisier, M J Booth, P S Salter. Inscription of 3D waveguides in diamond using an ultrafast laser. Applied Physics Letters, 109, 031109(2016).

    [43] V Bharadwaj, A Courvoisier, T T Fernandez. Femtosecond laser inscription of Bragg grating waveguides in bulk diamond. Optics Letters, 42, 3451-3453(2017).

    [44] Girolami?M, Conte?G, Trucchi?D?M, et?al. Investigation with β-particles and protons of buried graphite pillars in single-crystal CVD diamond. Diamond & Related Materials, 84, 10(2018).

    CLP Journals

    [1] HAO Xin, YIN Siyu, ZHANG Zongda, DING Jie, TIAN Zhennan, BAI Zhenxu. Preparation and Application of Nitrogen Vacancy Color Center in Diamond (Invited)[J]. Electro-Optic Technology Application, 2022, 37(1): 1

    Huafeng Wang, Ke Sun, Shengzhi Sun, Jianrong Qiu. Femtosecond laser induced microstructures in diamond and applications (Invited)[J]. Infrared and Laser Engineering, 2020, 49(12): 20201057
    Download Citation