• Chinese Optics Letters
  • Vol. 22, Issue 3, 031302 (2024)
Hongjie Guo1、2, Haifeng Liu1、3、*, Ming Lei4, Manqing Tan1, and Zhigang Song1
Author Affiliations
  • 1Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 2College of Materials Science and Opto-electronics Technology, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Beijing Huairou Instruments and Sensors Co., Ltd., Beijing 101400, China
  • 4Beijing Institute of Automation and Control Equipment, Key Laboratory of National Defense Science and Technology of Inertial Technology, Beijing 100074, China
  • show less
    DOI: 10.3788/COL202422.031302 Cite this Article Set citation alerts
    Hongjie Guo, Haifeng Liu, Ming Lei, Manqing Tan, Zhigang Song. Research progress of integrated optical gyroscope[J]. Chinese Optics Letters, 2024, 22(3): 031302 Copy Citation Text show less
    References

    [1] F. Bi, D. Zhang, L. Lu et al. Latest progress of integrated optical gyroscopes sensitive unit. Laser Optoelectron. Prog., 58, 0700005(2021).

    [2] H. Arianfard, S. Juodkazis, D. J. Moss et al. Sagnac interference in integrated photonics. Appl. Phys. Rev., 10, 011309(2023).

    [3] H.-F. Liu, H.-J. Guo, M.-Q. Tan et al. Research progress of lithium niobate thin film modulators. Chin. Opt., 15, 1(2022).

    [4] J. Geng, L. Yang, S. Zhao et al. Recent development of resonant micro cavity in resonant micro-optical gyro. Infrared Laser Eng., 50, 20210044(2021).

    [5] H. C. Lefevre. The Fiber-Optic Gyroscope(2022).

    [6] M. Sorel, P. J. R. Laybourn. Progress on the GaAlAs Ring Laser Gyroscope. Alt Freq., 10, 45(1998).

    [7] S. Donati. Electro-Optical Instrumentation: Sensing and Measuring with Lasers(2004).

    [8] L. Wang, D. R. Halstead, T. D. Monte et al. Low-cost, high-end tactical-grade fiber optic gyroscope based on photonic integrated circuit. IEEE International Symposium on Inertial Sensors and Systems (INERTIAL), 1(2019).

    [9] K. Shang, M. Lei, Q. Xiang et al. Near-navigation-grade interferometric fiber optic gyroscope with an integrated optical chip. Chin. Opt. Lett., 18, 120601(2020).

    [10] X. Suo, H. Yu, X. Wu. Integrated interferometric fiber optic gyroscope employing a photo-electronic chip. IEEE Photon. Technol. Lett., 34, 1250(2022).

    [11] A. Rickman. The commercialization of silicon photonics. Nat. Photonics, 8, 579(2014).

    [12] M. A. Tran, T. Komljenovic, J. C. Hulme et al. Integrated optical driver for interferometric optical gyroscopes. Opt. Express, 25, 3826(2017).

    [13] Y.-C. Wang, S.-Y. Lu, M.-C. Chan et al. CMOS-enabled silicon photonics driver chip for interferometric fiber optics gyroscope. IEEE International Symposium on Inertial Sensors and Systems (INERTIAL), 1(2022).

    [14] X. Yi, X. Wen. Y-integrated optic chip (Y-IOC) applied in fiber optic gyro. Proc. SPIE, 6344, 63440U(2006).

    [15] O. Deppe, G. Dorner, S. König et al. MEMS and FOG technologies for tactical and navigation grade inertial sensors—recent improvements and comparison. Sensors, 17, 567(2017).

    [16] J. Liu, C. Zhang, F. Gao et al. Method for improving the polarization extinction ratio of multifunction integrated optic circuits. Opt. Express, 29, 28096(2021).

    [17] H. Guo, H. Liu, Z. Wang et al. Design of a novel Y-junction electro-optic modulator based on thin film lithium niobite. J. Infrared Millim. Waves, 41, 279(2022).

    [18] K. Shang, M. Lei, Q. Xiang et al. Tactical-grade interferometric fiber optic gyroscope based on an integrated optical chip. Opt. Commun., 485, 126729(2021).

    [19] C.-G. Li, J.-Y. Yang, X.-H. Li et al. Design and fabrication of the GaAs integrated optical chip for fiber optical gyroscope. Optoelectron. Lett., 6, 269(2010).

    [20] S. Stopiński, A. Jusza, R. Piramidowicz. An interferometric fiber-optic gyroscope system based on an application specific photonic integrated circuit. European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference, CH_7_1(2017).

    [21] B. Wu, Y. Yu, X. Zhang. Mode-assisted silicon integrated interferometric optical gyroscope. Sci. Rep., 9, 12946(2019).

    [22] D. Liu, H. Li, X. Wang et al. Interferometric optical gyroscope based on an integrated silica waveguide coil with low loss. Opt. Express, 28, 15718(2020).

    [23] S. Srinivasan, R. Moreira, D. Blumenthal et al. Design of integrated hybrid silicon waveguide optical gyroscope. Opt. Express, 22, 24988(2014).

    [24] S. Gundavarapu, M. Belt, T. A. Huffman et al. Interferometric optical gyroscope based on an integrated Si3N4 low-loss waveguide coil. J. Lightwave Technol., 36, 1185(2018).

    [25] B. Wu, Y. Yu, J. Xiong et al. Silicon integrated interferometric optical gyroscope. Sci. Rep., 8, 8766(2018).

    [26] P. Del’Haye, S. A. Diddams, S. B. Papp. Laser-machined ultra-high-Q microrod resonators for nonlinear optics. Appl. Phys. Lett., 102, 221119(2013).

    [27] H.-K. Hsiao, K. A. Winick. Planar glass waveguide ring resonators with gain. Opt. Express, 15, 17783(2007).

    [28] H.-Y. Yu, C.-X. Zhang, L.-S. Feng et al. SiO2 waveguide resonator used in an integrated optical gyroscope. Chin. Phys. Lett., 26, 054210(2009).

    [29] L. Ning, L. Guo, M. Kong et al. Waveguide-type optical passive ring resonator gyro using frequency modulation spectroscopy technique. J. Semicond., 35, 124008(2014).

    [30] J. Zhang, H. Ma, H. Li et al. Single-polarization fiber-pigtailed high-finesse silica waveguide ring resonator for a resonant micro-optic gyroscope. Opt. Lett., 42, 3658(2017).

    [31] C. Feng, Y. Zhang, H. Ma et al. Improving long-term temperature bias stability of an integrated optical gyroscope employing a Si3N4 resonator. Photonics Res., 10, 1661(2022).

    [32] C. Feng, D. Zhang, Y. Zhang et al. Resonant integrated optical gyroscope based on Si3N4 waveguide ring resonator. Opt. Express, 29, 43875(2021).

    [33] Y. M. He, F. H. Yang, W. Yan et al. Asymmetry analysis of the resonance curve in resonant integrated optical gyroscopes. Sensors, 19, 3305(2019).

    [34] X.-M. Xue, J. Tang, H.-L. Zhou et al. All-polymer monolithic resonant integrated optical gyroscope. Opt. Express, 30, 42728(2022).

    [35] T. Zhang, G. Qian, Y.-Y. Wang et al. Integrated optical gyroscope using active Long-range surface plasmon-polariton waveguide resonator. Sci. Rep., 4, 3855(2014).

    [36] C. Ciminelli, F. Dell’Olio, M. N. Armenise et al. High performance InP ring resonator for new generation monolithically integrated optical gyroscopes. Opt. Express, 21, 556(2013).

    [37] A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko et al. Optical resonators with ten million finesse. Opt. Express, 15, 6768(2007).

    [38] W. Liang, V. S. Ilchenko, A. A. Savchenkov et al. Resonant microphotonic gyroscope. Optica, 4, 114(2017).

    [39] A. Biberman, M. J. Shaw, E. Timurdogan et al. Ultralow-loss silicon ring resonators. Opt. Lett., 37, 4236(2012).

    [40] G. Qian, T. Zhang, L.-J. Zhang et al. Demonstrations of centimeter-scale polymer resonator for resonant integrated optical gyroscope. Sens. Actuators A, 237, 29(2016).

    [41] Y.-Y. Wang, T. Zhang. Spontaneous emission noise in long-range surface plasmon polariton waveguide based optical gyroscope. Sci. Rep., 4, 6369(2014).

    [42] P. P. Khial, A. D. White, A. Hajimiri. Nanophotonic optical gyroscope with reciprocal sensitivity enhancement. Nat. Photonics, 12, 671(2018).

    [43] M. Mohammadi, S. Olyaee, M. Seifouri. Design and optimization of passive optical gyroscope, based on nanostructures ring resonators for rotation sensing applications. Opt. Quantum Electron., 54, 696(2022).

    [44] J. Chen, H. Zhang, J. Jin et al. Optimization of gyroscope properties with active coupled resonator optical waveguide structures. Proc. SPIE, 9378, 93781Q(2015).

    [45] H. Zhang, W. Li, P. Han et al. The effect of broadened linewidth induced by dispersion on the performance of resonant optical gyroscope. Opt. Commun., 407, 208(2018).

    [46] H. Zhang, J. Liu, J. Lin et al. On-chip tunable dispersion in a ring laser gyroscope for enhanced rotation sensing. Appl. Phys. A, 122, 501(2016).

    [47] X. Chang, H. Zhang, W. Li et al. Sensitivity enhancement of a dispersive cavity with squeezed vacuum light injection. J. Opt. Soc. Am. B, 39, 1815(2022).

    [48] J. Lin, J. Liu, H. Zhang et al. Theoretical analyses of resonant frequency shift in anomalous dispersion enhanced resonant optical gyroscopes. Sci. Rep., 6, 38759(2016).

    [49] H. Zhang, W. Li, P. Han et al. Mode broadening induced by rotation rate in an atom assisted microresonator. J. Appl. Phys., 125, 084502(2019).

    [50] J. M. Silver, L. Del Bino, M. T. M. Woodley et al. Nonlinear enhanced microresonator gyroscope. Optica, 8, 1219(2021).

    [51] M. Song, J. Nauriyal, J. Steinmetz et al. Integrated optical gyroscope with inverse weak value amplification. Conference on Lasers and Electro-Optics (CLEO), 1(2022).

    [52] J. Li, M.-G. Suh, K. Vahala. Microresonator Brillouin gyroscope. Optica, 4, 346(2017).

    [53] Y.-H. Lai, M.-G. Suh, Y.-K. Lu et al. Earth rotation measured by a chip-scale ring laser gyroscope. Nat. Photonics, 14, 345(2020).

    [54] S. Gundavarapu, G. M. Brodnik, M. Puckett et al. Sub-hertz fundamental linewidth photonic integrated Brillouin laser. Nat. Photonics, 13, 60(2019).

    [55] Y.-H. Lai, Y.-K. Lu, M.-G. Suh et al. Observation of the exceptional-point-enhanced Sagnac effect. Nature, 576, 65(2019).

    [56] M. De Carlo, F. De Leonardis, V. M. N. Passaro. Design rules of a microscale PT-symmetric optical gyroscope using group IV platform. J. Lightwave Technol., 36, 3261(2018).

    [57] M. De Carlo, F. De Leonardis, L. Lamberti et al. High-sensitivity real-splitting anti-PT-symmetric microscale optical gyroscope. Opt. Lett., 44, 3956(2019).

    [58] M. De Carlo, F. De Leonardis, L. Lamberti et al. Design of a resonator-bus-resonator anti-parity-time-symmetric integrated optical gyroscope. Opt. Lasers Eng., 153, 106983(2022).

    [59] S. Soleymani, Q. Zhong, M. Mokim et al. Chiral and degenerate perfect absorption on exceptional surfaces. Nat. Commun., 13, 599(2022).

    [60] Y. Zhang, J. Geng, L. Li et al. Exceptional-point-enhanced Brillouin micro-optical gyroscope based on self-injection locking. Opt. Commun., 528, 129008(2023).

    [61] Q. Zhong, J. Ren, M. Khajavikhan et al. Sensing with exceptional surfaces in order to combine sensitivity with robustness. Phys. Rev. Lett., 122, 153902(2019).

    [62] W. Li, Y. Zhou, P. Han et al. Exceptional-surface-enhanced rotation sensing with robustness in a whispering-gallery-mode microresonator. Phys. Rev. A, 104, 033505(2021).

    [63] H. Yang, X. Mao, G.-Q. Qin et al. Scalable higher-order exceptional surface with passive resonators. Opt. Lett., 46, 4025(2021).

    [64] G.-Q. Qin, R.-R. Xie, H. Zhang et al. Experimental realization of sensitivity enhancement and suppression with exceptional surfaces. Laser Photonics Rev., 15, 2000569(2021).

    Hongjie Guo, Haifeng Liu, Ming Lei, Manqing Tan, Zhigang Song. Research progress of integrated optical gyroscope[J]. Chinese Optics Letters, 2024, 22(3): 031302
    Download Citation