• Chinese Optics Letters
  • Vol. 21, Issue 3, 030501 (2023)
Ran Ning1, Dayong Wang1、2, Lu Rong1、2、*, Jie Zhao1、2, Yunxin Wang1、2, and Shufeng Lin1、2
Author Affiliations
  • 1Department of Physics and Optoelectronics Engineering, Faculty of Science, Beijing University of Technology, Beijing 100124, China
  • 2Beijing Engineering Research Center of Precision Measurement Technology and Instruments, Beijing 100124, China
  • show less
    DOI: 10.3788/COL202321.030501 Cite this Article Set citation alerts
    Ran Ning, Dayong Wang, Lu Rong, Jie Zhao, Yunxin Wang, Shufeng Lin. Binary diffractive lens with subwavelength focusing for terahertz imaging[J]. Chinese Optics Letters, 2023, 21(3): 030501 Copy Citation Text show less
    References

    [1] D. A. Lima, J. Song, X. R. Li, A. Portieri, Y. C. Shen, J. A. Zeitler, H. Lin. Review of terahertz pulsed imaging for pharmaceutical film coating analysis. Sensors, 20, 1441(2020).

    [2] M. Wan, J. J. Healy, J. T. Sheridan. Terahertz phase imaging and biomedical applications. Opt. Laser Technol., 122, 105859(2020).

    [3] Q. Liang, G. Klatt, N. Kraub, O. Kukharenko, T. Dekorsy. Origin of potential errors in the quantitative determination of terahertz optical properties in time-domain terahertz spectroscopy. Chin. Opt. Lett., 13, 093001(2015).

    [4] L. Rong, T. Latychevskaia, D. Wang, X. Zhou, Y. Wang. Terahertz in-line digital holography of dragonfly hindwing: amplitude and phase reconstruction at enhanced resolution by extrapolation. Opt. Express, 22, 17236(2014).

    [5] H. Huang, L. Rong, D. Wang, W. Li, Q. Deng, B. Li, Y. Wang, Z. Zhan, X. Wang, W. Wu. Synthetic aperture in terahertz in-line digital holography for resolution enhancement. Appl. Opt., 55, A43(2016).

    [6] L. Rong, F. Tan, D. Wang, Y. Zhang, K. Li, J. Zhao, Y. Wang. High-resolution terahertz ptychography using divergent illumination and extrapolation algorithm. Opt. Laser Technol., 147, 106729(2021).

    [7] Z. Li, Q. Yan, Y. Qin, W. Kong, M. Zou, X. Zhou, Z. You, P. Cheng. Resolution enhancement in terahertz digital in-line holography by sparsity-based extrapolation. J. Infrared Millim. Terahertz Waves, 42, 479(2021).

    [8] A. Bitman, S. Goldring, I. Moshe, Z. Zalevsky. Computed tomography using broadband Bessel THz beams and phase contrast. Opt. Lett., 39, 1925(2014).

    [9] Y. L. Lim, K. Bertling, T. Taimre, T. Gillespie, C. Glenn, A. Robinson, D. Indjin, Y. Han, L. Li, E. H. Linfield, A. G. Davies, P. Dean, A. D. Raki. Coherent imaging using laser feedback interferometry with pulsed-mode terahertz quantum cascade lasers. Opt. Express, 27, 10221(2019).

    [10] M. Wan, H. Yuan, J. J. Healy, J. T. Sheridan. Terahertz confocal imaging: polarization and sectioning characteristics. Opt. Lasers Eng., 134, 106182(2020).

    [11] Y. Takida, K. Nawata, H. Minamide. Injection-seeded backward terahertz-wave parametric oscillator. APL Photonics, 5, 061301(2020).

    [12] D. Wang, X. Jin, J. Zhao, Y. Wang, L. Rong, J. J. Healy. Continuous-wave terahertz diffraction tomography for measuring three-dimensional refractive index maps. Chin. Opt. Lett., 19, 123701(2021).

    [13] B. Li, D. Wang, L. Rong, C. Zhai, Y. Wang, J. Zhao. Application of continuous-wave terahertz computed tomography for the analysis of chicken bone structure. Opt. Eng., 57, 023105(2018).

    [14] L. Chen, Y. Wang, D. Xu, Y. Ren, Y. He, C. Li, C. Zhang, L. Tang, C. Yan, J. Yao. Terahertz computed tomography of high-refractive-index objects based on refractive index matching. IEEE Photon. J., 10, 5900813(2018).

    [15] N. V. Chernomyrdin, A. O. Schadko, S. P. Lebedev, V. L. Tolstoguzov, V. N. Kurlov, I. V. Reshetov, I. E. Spektor, M. Skorobogatiy, S. O. Yurchenko, K. I. Zaytsev. Solid immersion terahertz imaging with sub-wavelength resolution. Appl. Phys. Lett., 110, 221109(2017).

    [16] Z. Yin, Q. Zheng, K. Wang, G. Kai, S. Fei, H. Zhou, Y. Sun, Q. Zhou, J. Gao, L. Luo. Tunable dual-band terahertz metalens based on stacked graphene metasurfaces. Opt. Commun., 429, 41(2018).

    [17] X. Wang, J. Zhao, M. Li, G. Jiang, X. Hu, N. Zhang, H. Zhai, W. Liu. Tight focus and field enhancement of terahertz waves using a probe based on spoof surface plasmons. Acta. Phys. Sin., 69, 054201(2020).

    [18] L. Minkevičius, D. Jokubauskis, I. Kašalynas, S. Orlov, A. Urbas, G. Valušis. Bessel terahertz imaging with enhanced contrast realized by silicon multi-phase diffractive optics. Opt. Express, 27, 36358(2019).

    [19] D. Ruan, Z. Li, L. Du, X. Zhou, L. Zhu, C. Lin, M. Yang, G. Chen, W. Yuan, G. Liang, Z. Wen. Realizing a terahertz far-field sub-diffraction optical needle with sub-wavelength concentric ring structure array. Appl. Opt., 57, 7905(2018).

    [20] A. Iba, C. W. Domier, M. Ikeda, A. Mase, M. Nakajima, A. V. Pham, N. C. Luhmann. Subdiffraction focusing with a long focal length using a terahertz-wave super-oscillatory lens. Opt. Lett., 46, 4912(2021).

    [21] Z. Zhang, X. Wei, C. Liu, K. Wang, J. Liu, Z. Yang. Rapid fabrication of terahertz lens via three-dimensional printing technology. Chin. Opt. Lett., 13, 022201(2015).

    [22] J. Seifert, G. Hernadz, M. Koch. Terahertz beam steering using active diffraction grating fabricated by 3D printing. Opt. Express, 28, 21737(2020).

    [23] D. Rohrbach, B. J. Kang, T. Feurer. 3D-printed THz wave- and phase-plates. Opt. Express, 29, 27160(2021).

    [24] C. Liu, J. Liu, L. Niu, X. Wei, K. Wang, Z. Yang. Terahertz circular Airy vortex beams. Sci. Rep., 7, 3891(2017).

    [25] W. Goodman. Introduction to Fourier Optics(2005).

    [26] T. R. M. Sales, G. M. Morris. Diffractive superresolution elements. J. Opt. Soc. Am. A, 14, 1637(1997).

    [27] S. Mukhopadhyay, L. Hazra. Pareto optimality between width of central lobe and peak sidelobe intensity in the far-field pattern of lossless phase-only filters for enhancement of transverse resolution. Appl. Opt., 54, 9205(2015).

    [28] H. Fei, J. Yu, Y. Tan, C. Wei, K. Sugioka. Tailoring femtosecond 1.5-µm Bessel beams for manufacturing high-aspect-ratio through-silicon vias open. Sci. Rep., 7, 40785(2017).

    [29] X. Wan, B. Shen, R. Menon. Diffractive lens design for optimized focusing. J. Opt. Soc. Am. A, 31, B27(2014).

    [30] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi. Optimization by simulated annealing. Science, 220, 671(1983).

    [31] S. F. Busch, M. Weidenbach, M. Fey, F. Schäfer, M. Koch, T. Probst. Optical properties of 3D printable plastics in the THz regime and their application for 3D printed THz optics. J. Infrared Millim. Terahertz Waves, 35, 993(2014).

    [32] K. Huang, H. Ye, J. Teng, S. P. Yeo, B. L. Yanchuk, C. W. Qiu. Optimization-free super oscillatory lens using phase and amplitude masks. Laser Photon. Rev., 8, 152(2014).

    [33] J. Lindberg. Mathematical concepts of optical superresolution. J. Opt., 14, 083001(2012).

    Ran Ning, Dayong Wang, Lu Rong, Jie Zhao, Yunxin Wang, Shufeng Lin. Binary diffractive lens with subwavelength focusing for terahertz imaging[J]. Chinese Optics Letters, 2023, 21(3): 030501
    Download Citation