• High Power Laser Science and Engineering
  • Vol. 11, Issue 6, 06000e85 (2023)
Tong Yang1、2, Zhen Guo1、2, Yang Yan1、2, Minjian Wu1、2, Yadong Xia1、2, Qiangyou He1、2, Hao Cheng1、2, Yuze Li1、2, Yanlv Fang1、2, Yanying Zhao1、2、3, Xueqing Yan1、2、3, and Chen Lin1、2、3、*
Author Affiliations
  • 1State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, CAPT, Peking University, Beijing, China
  • 2Beijing Laser Acceleration Innovation Center, Beijing, China
  • 3Institute of Guangdong Laser Plasma Technology, Guangzhou, China
  • show less
    DOI: 10.1017/hpl.2023.50 Cite this Article Set citation alerts
    Tong Yang, Zhen Guo, Yang Yan, Minjian Wu, Yadong Xia, Qiangyou He, Hao Cheng, Yuze Li, Yanlv Fang, Yanying Zhao, Xueqing Yan, Chen Lin. Measurements of plasma density profile evolutions with a channel-guided laser[J]. High Power Laser Science and Engineering, 2023, 11(6): 06000e85 Copy Citation Text show less

    Abstract

    The discharged capillary plasma channel has been extensively studied as a high-gradient particle acceleration and transmission medium. A novel measurement method of plasma channel density profiles has been employed, where the role of plasma channels guiding the advantages of lasers has shown strong appeal. Here, we have studied the high-order transverse plasma density profile distribution using a channel-guided laser, and made detailed measurements of its evolution under various parameters. The paraxial wave equation in a plasma channel with high-order density profile components is analyzed, and the approximate propagation process based on the Gaussian profile laser is obtained on this basis, which agrees well with the simulation under phase conditions. In the experiments, by measuring the integrated transverse laser intensities at the outlet of the channels, the radial quartic density profiles of the plasma channels have been obtained. By precisely synchronizing the detection laser pulses and the plasma channels at various moments, the reconstructed density profile shows an evolution from the radial quartic profile to the quasi-parabolic profile, and the high-order component is indicated as an exponential decline tendency over time. Factors affecting the evolution rate were investigated by varying the incentive source and capillary parameters. It can be found that the discharge voltages and currents are positive factors quickening the evolution, while the electron-ion heating, capillary radii and pressures are negative ones. One plausible explanation is that quartic profile contributions may be linked to plasma heating. This work helps one to understand the mechanisms of the formation, the evolutions of the guiding channel electron-density profiles and their dependences on the external controllable parameters. It provides support and reflection for physical research on discharged capillary plasma and optimizing plasma channels in various applications.

    $$\begin{align}\left({\nabla}^2-\frac{1}{c^2}\frac{\partial^2}{\partial {t}^2}\right)E={k}^2\left(1-{\eta}_{\mathrm{r}}^2\right)\widehat{E},\end{align}$$ ((1))

    View in Article

    $$\begin{align}{\eta}_{\mathrm{r}}=1-\frac{k_{\mathrm{p}}^2(r)}{k^2},\end{align}$$ ((2))

    View in Article

    $$\begin{align}{\nabla}_{\perp}^2={\nabla}^2-\frac{\partial^2}{\partial {z}^2}\simeq \frac{1}{r}\frac{\partial }{\partial r}\left(r\frac{\partial }{\partial r}\right),\end{align}$$ ((3))

    View in Article

    $$\begin{align}\left({\nabla}_{\perp}^2+2 ik\frac{\partial }{\partial z}\right)\widehat{E}={k}_{\mathrm{p}}^2(r)E,\end{align}$$ ((4))

    View in Article

    $$\begin{align}\left\langle {r}^2\right\rangle =\frac{\int_0^{\infty }{r}^3{\left|\widehat{E}\right|}^2 \mathrm{d}r}{\int_0^{\infty }r{\left|\widehat{E}\right|}^2 \mathrm{d}r}.\end{align}$$ ((5))

    View in Article

    $$\begin{align}8\pi {r}_{\mathrm{e}}{\int}_0^{\infty }n(r)\left(\frac{2{r}^2}{w_{\mathrm{m}}^2}-1\right){e}^{-\frac{2{r}^2}{w_{\mathrm{m}}^2}} r\mathrm{d}r-1=0.\end{align}$$ ((6))

    View in Article

    $$\begin{align}n(r)={n}_0+\frac{1-{E}_{\varPsi}}{\pi {r}_{\mathrm{e}}{w}_{\mathrm{m}}^4}{r}^2+\frac{E_{\varPsi}}{2\pi {r}_{\mathrm{e}}{w}_{\mathrm{m}}^6}{r}^4,\end{align}$$ ((7))

    View in Article

    $$\begin{align}n(r)={n}_0+\Delta {n}_{{\mathrm{r}}2}\frac{r^2}{r_{{\mathrm{ch}}}^2}+\Delta {n}_{{\mathrm{r}}4}\frac{r^4}{r_{{\mathrm{ch}}}^4}.\end{align}$$ ((8))

    View in Article

    $$\begin{align}n(r)\simeq {n}_0+\Delta {n}_{{\mathrm{ch}}}\frac{r^2}{r_{{\mathrm{ch}}}^2}={n}_0+\Delta {n}_{{\mathrm{r}}2}\left(1+\frac{\delta \Delta {n}_{{\mathrm{r}}2}}{\Delta {n}_{{\mathrm{r}}2}}\right)\frac{r^2}{r_{{\mathrm{ch}}}^2},\end{align}$$ ((9))

    View in Article

    $$\begin{align}E={E}_{\mathrm{s}}{{e}}^{i\theta -\left(1-i\;{\varphi}_{\mathrm{G}}\right)\frac{r^2}{w^2}},\end{align}$$ ((10))

    View in Article

    $$\begin{align}\frac{\partial^2w}{\partial {z}^2}=\frac{4}{kw^2}\left(1-\frac{w^4}{w_{\mathrm{m}}^4}\right),\end{align}$$ ((11))

    View in Article

    $$\begin{align}{w}_{\mathrm{m}}^4=\frac{r_{{\mathrm{ch}}}^2}{\pi {r}_{\mathrm{e}}\Delta {n}_{{\mathrm{ch}}}}.\end{align}$$ ((12))

    View in Article

    $$\begin{align}{w}_{\mathrm{m}}={w}_{{\mathrm{mM}}}\left(1-\frac{1}{4}\frac{\delta \Delta {n}_{{\mathrm{r}}2}}{\Delta {n}_{{\mathrm{r}}2}}\right)={w}_{{\mathrm{mM}}}+\delta {w}_{\mathrm{m}}\kern1pt,\end{align}$$ ((13))

    View in Article

    $$\begin{align}E={E}_0\left[1-\frac{\delta {w}_{\mathrm{m}}}{w_{\mathrm{m}}}\left(1-\frac{2{r}^2}{w_{\mathrm{m}}^2}\right){{e}}^{-{ik}_{\mathrm{os}}z}\right]{e}^{-\frac{r^2}{w_{\mathrm{m}}^2}}.\end{align}$$ ((14))

    View in Article

    $$\begin{align} I&={EE}^{\ast}\nonumber\\ &={E}_0^2\left\{1+{\left[\Psi \chi \left(1-\chi \right)\right]}^2-2\Psi \chi \left(1-\chi \right)\cos {k}_{{\mathrm{os}}}z\right\}{e}^{-\chi},\end{align}$$ ((15))

    View in Article

    $$\begin{align}\Psi =\frac{1}{8}\frac{\Delta {n}_{{\mathrm{r}}4}}{\Delta {n}_{{\mathrm{r}}2}}\sqrt[4]{\pi {r}_{\mathrm{e}}\Delta {n}_{{\mathrm{r}}2}{r}_{{\mathrm{ch}}}^2}\end{align}$$ ((16))

    View in Article

    $$\begin{align}\frac{z}{2{r}_{{\mathrm{ch}}}}\ge \sqrt[3]{\frac{2{r}_{{\mathrm{ch}}}}{\lambda }}.\end{align}$$ ((17))

    View in Article

    $$\begin{align}E={E}_0\frac{2{J}_1(x)}{x}\simeq {E}_0{{e}}^{-\frac{r^2}{w^2}},\end{align}$$ ((18))

    View in Article

    $$\begin{align}I={I}_0{e}^{-\alpha t}\sin \omega t,\quad t>0,\end{align}$$ ((19))

    View in Article

    Tong Yang, Zhen Guo, Yang Yan, Minjian Wu, Yadong Xia, Qiangyou He, Hao Cheng, Yuze Li, Yanlv Fang, Yanying Zhao, Xueqing Yan, Chen Lin. Measurements of plasma density profile evolutions with a channel-guided laser[J]. High Power Laser Science and Engineering, 2023, 11(6): 06000e85
    Download Citation