• Journal of Infrared and Millimeter Waves
  • Vol. 37, Issue 2, 154 (2018)
XU Zhang-Hua1、2、3、4、*, LIN Lu1, WANG Qian-Feng1, HUANG Xu-Ying1, LIU Jian4, YU Kun-Yong4, and CHEN Chong-Cheng2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    DOI: 10.11972/j.issn.1001-9014.2018.02.005 Cite this Article
    XU Zhang-Hua, LIN Lu, WANG Qian-Feng, HUANG Xu-Ying, LIU Jian, YU Kun-Yong, CHEN Chong-Cheng. Construction and application effects of normalized shaded vegetation index (NSVI)[J]. Journal of Infrared and Millimeter Waves, 2018, 37(2): 154 Copy Citation Text show less
    References

    [1] Kantsingh K, Pal K J, Nigam M. Shadow detection and removal from remote sensing images using NDI and morphological operators[J]. International Journal of Computer Applications, 2012, 42(10): 37-40.

    [2] Zhang H, Sun K, Li W. Object-oriented shadow detection and removal from urban high-resolution remote sensing images[J]. IEEE Transactions on Geoscience & Remote Sensing, 2014, 52(11): 6972-6982.

    [3] Anoopa S, Dhanya V, Kizhakkethottam J J. Shadow detection and removal using tri-class based thresholding and shadow matting technique[J]. Procedia Technology,2016, 24: 1358-1365.

    [4] Ambrosio G. Shadow detection in colour high-resolution satellite images[J]. International Journal of Remote Sensing, 2008, 29(7):1945-1963.

    [5] Chung K L, Lin Y R, Huang Y H. Efficient shadow detection of color aerial images based on successive thresholding scheme[J]. IEEE Transactions on Geoscience & Remote Sensing,2009,47(2): 671-682.

    [6] Liasis G, Stavrou S. Satellite images analysis for shadow detection and building height estimation[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2016, 119: 437-450.

    [7] Li Y, Gong P, Sasagawa T. Integrated shadow removal based on photogrammetry and image analysis[J]. International Journal of Remote Sensing, 2005, 26(18): 3911-3929.

    [8] Yang J, Zhao Z M, Yang J. Shadow removal method for high resolution remote sensing image[J]. Geomatics and Information Science of Wuhan University,2008, 33(1): 17-20.

    [9] Yamazaki F, Liu W, Takasaki, M. Characteristics of shadow and removal of its effects for remote sensing imagery[J]. IEEE International Geoscience and Remote Sensing Symposium, IGARSS, 2009, 4:426-429.

    [10] Zigh E, Belbachir M F, Kadiri M, et al. New shadow detection and removal approach to improve neural stereo correspondence of dense urban VHR remote sensing images[J]. European Journal of Remote Sensing, 48: 447-463.

    [11] Su N, Zhang Y, Tian S, et al. Shadow detection and removal for occluded object information recovery in urban high-resolution panchromatic satellite images[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 9(6):2568-2582.

    [12] Yan L, Sasagawa T, Peng G, A system of the shadow detection and shadow removal for high resolution city aerial photo[J]. Xxth ISPRS Congress, 2004, Istanbul, Jul. 12-23.

    [13] Li R, Zhang B, Zhang X, et al. Practical method of shadow detection and removal for high spatial resolution remote sensing image[C]. MIPPR 2007: Remote Sensing and GIS Data Processing and Applications; and Innovative Multispectral Technology and Applications, Wuhan, 2007, Nov. 15, p. 67900Q

    [14] Zhi P U, Liao Y, Jie B. Shadow detection and removal based on object-oriented method in high spatial resolution remote sense image[J]. Remote Sensing Technology & Application. 2008, 23(6): 735-738.

    [15] Li B, Zhang H, Xu F. Water extraction in high resolution remote sensing image based on hierarchical spectrum and shape features[C]. 35th International Symposium on Remote Sensing of Environment (ISRSE35), Beijing, 2014,Apr. 22-26, 17, p. 1-6.

    [16] Petus C, Lewis M, White D. Monitoring temporal dynamics of great artesian basin wetland vegetation, Australia, using MODIS NDVI[J]. Ecological Indicators, 2013, 34(11): 41-52.

    [17] Qiao T, Zhang H Q, Chen Y F, et al. Extraction of vegetation information based on NDVI segmentation and object-oriented method[J]. Journal of Northwest Forestry University, 2013, 59(4): 328-333.

    [18] Fleming S W, Lavenue A M, Aly A H. Practical applications of spectral analysis to hydrologic time series[J]. Hydrological Processes,2002, 16(2): 565-574.

    [19] Schaefli B, Maraun D, Holschneider M. What drives high flow events in the Swiss Alps Recent developments in wavelet spectral analysis and their application to hydrology. Advances in Water Resources, 2007, 30(12): 2511-2525.

    [20] Aneglini P. Correlation and spectral analysis of two hydrogeological systems in central Italy[J]. Hydrological Sciences Journal, 2009, 42(3): 425-438.

    [21] Han X Y, Han L, Chen L W. Extraction of vegetation information using adding windows DTW distance with NDVI time series data[J]. Engineering of Surveying & Mapping,2016, 25(3): 11-16.

    [22] Liu Y, Guo Y, Wang J, et al. A preliminary approach on the synchronically ground based measurement of spectral reflectance, NDVI, LAI, and the temperature and moisture of soils[J]. Proceedings of SPIE -The International Society for Optical Engineering, 7123, Beijing, Nov. 24, pp. 712310-1-712310-7.

    [23] Prakash K L, Raghavendra K, Somashekar R K. Temporal-scale spectral variability analysis of water quality parameters to realize seasonal behaviour of a tropical river system-River Cauvery, India[J]. Journal of Environmental Biology, 2009, 30: 235-240.

    [24] Santin-Janin H, Garel M, Chapuis J L, et al. Assessing the performance of NDVI as a proxy for plant biomass using non-linear models: a case study on the Kerguelen archipelago[J]. Polar Biology, 2009, 32(6): 861-871.

    [25] Fang Q M, Zhan Z M. A novel dynamic stretching solution to eliminate saturation effect in NDVI and its application in drought monitoring[J]. Chinese Geographical Science, 2012, 22(6): 683-694.

    [26] Gu Y, Wylie B K, Howard D M, et al. NDVI saturation adjustment: a new approach for improving cropland performance estimates in the Greater Platte River Basin, USA[J]. Ecological Indicators, 2013, 30(2): 1-6.

    [27] Liu P, Zhang Y, Zhou B, et al. Land use/cover classification using multi-source data with SAM. Journal of Zhejiang University (Engineering Science), 2009, 43(9): 1574-1579.

    [28] Babal M, Daniska J, Mikus J, et al. Modelling index of thermophily by means of a multi-source database on Broggerhalvoya Peninsula (Svalbard)[J]. International Journal of Remote Sensing, 2010, 23(21): 4683-4698.

    [29] Creech T G, Epps C W, Monello R J, et al. Predicting diet quality and genetic diversity of a desert-adapted ungulate with NDVI[J]. Journal of Arid Environment,2016, 127: 160-170.

    [30] Rudorff C M, Galv o L S, Novo E M L M. Reflectance of floodplain waterbodies using EO-1 Hyperion data from high and receding flood periods of the Amazon river. International Journal of Remote Sensing, 2013, 30(10): 2713-2720.

    [31] Kanungo D P, Sarkar S. Use of multi-source data sets for land use/land cover classification in a hilly terrain for landslide study[J]. Disaster & Development, 2011, 5(1): 35-51.

    [32] Legout C, Poulenard J, Nemery J, et al. Quantifying suspended sediment sources during flood events in headwater catchments using diffuse reflectance spectroscopy[C]. EGU General Assembly, Vienna, 2013, Apr. 7-12, p. 15.

    [33] Zhou J H, Zhou Y F, Guo X H, et al. Methods of extracting distribution information of plants at urban darken areas and repairing their brightness[J]. Journal of East China Normal University (Natural Science), 2011, 6: 1-9.

    [34] Liu H, Xie T W. Study on shadow detection in high resolution remote sensing image based on PCA and HIS modelJ]. Remote Sensing Technology and Application, 2013, 28(1):78-84.

    [35] Legout C, Poulenard J, Nemery J, et al. Quantifying suspended sediment sources during flood events in headwater catchments using diffuse reflectance spectroscopy[C]. EGU General Assembly, Vienna, 2013, Apr. 7-12, p. 15.

    [36] Zhou J H, Zhou Y F, Guo X H, et al. Methods of extracting distribution information of plants at urban darken areas and repairing their brightness[J]. Journal of East China Normal University (Natural Science), 2011, 6: 1-9.

    [37] Liu H, Xie T W. Study on shadow detection in high resolution remote sensing image based on PCA and HIS modelJ]. Remote Sensing Technology and Application, 2013, 28(1): 78-84.

    XU Zhang-Hua, LIN Lu, WANG Qian-Feng, HUANG Xu-Ying, LIU Jian, YU Kun-Yong, CHEN Chong-Cheng. Construction and application effects of normalized shaded vegetation index (NSVI)[J]. Journal of Infrared and Millimeter Waves, 2018, 37(2): 154
    Download Citation