• Acta Optica Sinica
  • Vol. 44, Issue 6, 0601001 (2024)
Wenqiang Lu1,2,3, Shizhi Yang1,2,3,*, Tao Luo1,2,3, Xuebin Li1,2,3..., Shengcheng Cui1,2,3, Chen Cheng2,5, Lu Han2,4, Jianjun Shi1,2,3 and Yeyan Han1,2,3|Show fewer author(s)
Author Affiliations
  • 1Key Laboratory of Atmospheric Optics, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei 230031, Anhui , China
  • 2Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, Anhui , China
  • 3Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, Anhui , China
  • 4Center for Fundamental Science Research, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei 230031, Anhui , China
  • 5Key Laboratory of Optical Calibration and Characterization, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei 230031, Anhui , China
  • show less
    DOI: 10.3788/AOS230605 Cite this Article Set citation alerts
    Wenqiang Lu, Shizhi Yang, Tao Luo, Xuebin Li, Shengcheng Cui, Chen Cheng, Lu Han, Jianjun Shi, Yeyan Han. Parameter Retrieval of Transparent Cirrus Clouds over South China Sea Based on Artificial Neural Networks[J]. Acta Optica Sinica, 2024, 44(6): 0601001 Copy Citation Text show less
    Data processing flowchart
    Fig. 1. Data processing flowchart
    Histograms of transparent cirrus cloud optical depth and top height. (a) Transparent cirrus cloud optical depth; (b) top height of cirrus cloud
    Fig. 2. Histograms of transparent cirrus cloud optical depth and top height. (a) Transparent cirrus cloud optical depth; (b) top height of cirrus cloud
    ROC curve of probability of detection POD and rate of false alarm POD,and probability of detection POD varying with transparent cirrus optical depth. (a) ROC curve; (b) probability of detection POD varying with transparent cirrus optical depth
    Fig. 3. ROC curve of probability of detection POD and rate of false alarm POD,and probability of detection POD varying with transparent cirrus optical depth. (a) ROC curve; (b) probability of detection POD varying with transparent cirrus optical depth
    MPE and MAPE of optical depth and top height of transparent cirrus clouds. (a) MPE of optical depth; (b) MPE of top height; (c) MAPE of optical depth; (d) MAPEof top height
    Fig. 4. MPE and MAPE of optical depth and top height of transparent cirrus clouds. (a) MPE of optical depth; (b) MPE of top height; (c) MAPE of optical depth; (d) MAPEof top height
    MPE and MAPE varying with optical depth and top height. (a) Optical depth; (b) top height
    Fig. 5. MPE and MAPE varying with optical depth and top height. (a) Optical depth; (b) top height
    Scatter plots of predicted values and true values. (a) Optical depth; (b) top height
    Fig. 6. Scatter plots of predicted values and true values. (a) Optical depth; (b) top height
    MODIS cloud fraction and CALIOP trajectory (line)
    Fig. 7. MODIS cloud fraction and CALIOP trajectory (line)
    Distributions of MODIS cloud fraction. (a) Before detection; (b) after detection
    Fig. 8. Distributions of MODIS cloud fraction. (a) Before detection; (b) after detection
    Comparison of detection results. (a) MODIS clear sky observation results; (b) detected results of neural network; (c) CALIOP observation results
    Fig. 9. Comparison of detection results. (a) MODIS clear sky observation results; (b) detected results of neural network; (c) CALIOP observation results
    Comparison of inverse values and true values. (a) Optical depth; (b) top height
    Fig. 10. Comparison of inverse values and true values. (a) Optical depth; (b) top height
    Transparent cirrus clouds undetected by MODIS
    Fig. 11. Transparent cirrus clouds undetected by MODIS
    Distributions of optical depth and top height of transparent cirrus clouds undetected by MODIS. (a) Optical depth; (b) top height
    Fig. 12. Distributions of optical depth and top height of transparent cirrus clouds undetected by MODIS. (a) Optical depth; (b) top height
    Band No.λ /μmFscale /10-4doffset
    276.7151.1782724.218
    287.3251.9242317.488
    298.5505.5712610.015
    309.7304.0631560.333
    3111.0306.5082035.933
    3212.0205.7102119.085
    3313.3352.6232500.599
    3413.6352.0092499.094
    3513.9351.7682500.521
    3614.2351.1862495.891
    Table 1. MODIS correction coefficients for infrared bands
    ItemPredicted value
    Transparent cirrus cloudsClear sky
    True valueTransparent cirrus clouds28873 NTP7509 NFN
    Clear sky2716 NFP24881 NTN
    Table 2. Confusion matrix
    AlgorithmRMSE/R
    Optical depthTop height
    Algorithm proposed by Kox et al.0.24/0.610.71 km/0.82
    Algorithm proposed by Strandgren et al.Not given/0.65Not given/0.90
    Ours0.25/0.790.74 km/0.87
    Table 3. Comparison of results of related algorithms
    Wenqiang Lu, Shizhi Yang, Tao Luo, Xuebin Li, Shengcheng Cui, Chen Cheng, Lu Han, Jianjun Shi, Yeyan Han. Parameter Retrieval of Transparent Cirrus Clouds over South China Sea Based on Artificial Neural Networks[J]. Acta Optica Sinica, 2024, 44(6): 0601001
    Download Citation