• Acta Photonica Sinica
  • Vol. 51, Issue 6, 0618001 (2022)
Kaiqiu LAN1、2、*, Xibin YANG2, Baoteng XU2, Jialin LIU2, Wei ZHOU2, and Daxi XIONG2
Author Affiliations
  • 1School of Biomedical Engineering(Suzhou),Division of Life Sciences and Medicine,University of Science and Technology of China,Suzhou,Jiangsu 215163,China
  • 2Center of Light and Health,Suzhou Institute of Biomedical Engineering and Technology,Chinese Academy of Sciences,Suzhou,Jiangsu 215163,China
  • show less
    DOI: 10.3788/gzxb20225106.0618001 Cite this Article
    Kaiqiu LAN, Xibin YANG, Baoteng XU, Jialin LIU, Wei ZHOU, Daxi XIONG. In Vivo,Dual-color Fluorescent Imaging Miniature Microscope[J]. Acta Photonica Sinica, 2022, 51(6): 0618001 Copy Citation Text show less
    References

    [1] L TIAN, S A HIRES, T MAO et al. Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nature methods, 6, 875-881(2009).

    [2] T W CHEN, T J WARDILL, Y SUN et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature, 499, 295-300(2013).

    [3] K K GHOSH, L D BURNS, E D COCKER et al. Miniaturized integration of a fluorescence microscope. Nature Methods, 8, 871-878(2011).

    [4] L FENNO, O YIZHAR, K DEISSEROTH. The development and application of optogenetics. Annual Review of Neuroscience, 34, 389-412(2011).

    [5] A M STAMATAKIS, M J SCHACHTER, S GULATI et al. Simultaneous optogenetics and cellular resolution calcium imaging during active behavior using a miniaturized microscope. Frontiers in Neuroscience, 12, 496(2018).

    [6] S SRINIVASAN, T HOSOKAWA, P VERGARA et al. Miniaturized microscope with flexible light source input for neuronal imaging and manipulation in freely behaving animals. Biochemical and Biophysical Research Communications, 517, 520-524(2019).

    [7] A DE GROOT, B J G VAN DEN BOOM, R M VAN GENDEREN et al. NINscope, a versatile miniscope for multi-region circuit investigations. Elife, 9, e49987(2020).

    [8] R PREVEDEL, Y G YOON, M HOFFMANN et al. Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy. Nature Methods, 11, 727-730(2014).

    [9] K YANNY, N ANTIPA, W LIBERTI et al. Miniscope3D: optimized single-shot miniature 3D fluorescence microscopy. Light: Science & Applications, 9, 1-13(2020).

    [10] A BAGRAMYAN, L TABOURIN, A RASTQAR et al. Focus-tunable microscope for imaging small neuronal processes in freely moving animals. Photonics Research, 9, 1300-1309(2021).

    [11] B B SCOTT, S Y THIBERGE, C GUO et al. Imaging cortical dynamics in GCaMP transgenic rats with a head-mounted widefield macroscope. Neuron, 100, 1045-1058. e5(2018).

    [12] M L RYNES, D A SURINACH, S LINN et al. Miniaturized head-mounted microscope for whole-cortex mesoscale imaging in freely behaving mice. Nature Methods, 18, 417-425(2021).

    [13] T SHUMAN, D AHARONI, D J CAI et al. Breakdown of spatial coding and interneuron synchronization in epileptic mice. Nature neuroscience, 23, 229-238(2020).

    [14] K J SEKIGUCHI, P SHEKHTMEYSTER, K MERTEN et al. Imaging large-scale cellular activity in spinal cord of freely behaving mice. Nature Communications, 7, 1-13(2016).

    [15] A BOLLIMUNTA, S R SANTACRUZ, R W EATON et al. Head-mounted microendoscopic calcium imaging in dorsal premotor cortex of behaving rhesus macaque. Cell Reports, 35, 109239(2021).

    [16] J H JENNINGS, C K KIM, J H MARSHEL et al. Interacting neural ensembles in orbitofrontal cortex for social and feeding behaviour. Nature, 565, 645-649(2019).

    [17] S MALVAUT, V S CONSTANTINESCU, H DEHEZ et al. Deciphering brain function by miniaturized fluorescence microscopy in freely behaving animals. Frontiers in Neuroscience, 819(2020).

    [18] J CHEN, H CHU, Y LAI et al. Highly efficient achromatic subdiffraction focusing lens in the near field with large numerical aperture. Photonics Research, 9, 2088-2094(2021).

    [19] Y QIAN, K D PIATKEVICH, BMC LARNEY et al. A genetically encoded near-infrared fluorescent calcium ion indicator. Nature Methods, 16, 171-174(2019).

    [20] A A SHEMETOV, M V MONAKHOV, Q ZHANG et al. A near-infrared genetically encoded calcium indicator for in vivo imaging. Nature Biotechnology, 39, 368-377(2021).

    [21] A BAGRAMYAN. Lightweight 1-photon miniscope for imaging in freely behaving animals at subcellular resolution. IEEE Photonics Technology Letters, 32, 909-912(2020).

    [22] D AHARONI, T M HOOGLAND. Circuit investigations with open-source miniaturized microscopes: past, present and future. Frontiers in Cellular Neuroscience, 13, 141(2019).

    [23] T H CHIA, M J LEVENE. Microprisms for in vivo multilayer cortical imaging. Journal of Neurophysiology, 102, 1310-1314(2009).

    [24] E LEVENSON, P LERCH, M C MARTIN. Infrared imaging: Synchrotrons vs. arrays, resolution vs. speed. Infrared Physics & Technology, 49, 45-52(2006).

    Kaiqiu LAN, Xibin YANG, Baoteng XU, Jialin LIU, Wei ZHOU, Daxi XIONG. In Vivo,Dual-color Fluorescent Imaging Miniature Microscope[J]. Acta Photonica Sinica, 2022, 51(6): 0618001
    Download Citation