• Photonic Sensors
  • Vol. 14, Issue 1, 240125 (2024)
Yang CHEUNG1, Zhenguo JING1、*, Qiang LIU2, Ang LI3, Yueying LIU3, Yihang GUO3, Sen ZHANG3, Dapeng ZHOU1, and and Wei PENG1
Author Affiliations
  • 1School of Physics, Dalian University of Technology, Dalian 116024, China
  • 2School of Computer and Electronic Information / School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China
  • 3School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
  • show less
    DOI: 10.1007/s13320-023-0690-0 Cite this Article
    Yang CHEUNG, Zhenguo JING, Qiang LIU, Ang LI, Yueying LIU, Yihang GUO, Sen ZHANG, Dapeng ZHOU, and Wei PENG. Fast-Response Fiber-Optic FPI Temperature Sensing System Based on Modulated Grating Y-Branch Tunable Laser[J]. Photonic Sensors, 2024, 14(1): 240125 Copy Citation Text show less
    References

    [1] J. Q. Feng, P. Sun, W. H. Tang, D. P. Buse, Q. H. Wu, Z. Richardson, et al., “Implementation of a power transformer temperature monitoring system,” in Proceedings. International Conference on Power System Technology. IEEE, China, 2002, pp. 1980–1983.

    [2] J. Kortschinski and J. R. Leslie, “A power-cable temperature monitoring system,” IEEE Transactions on Power Apparatus and Systems, 1970, PA89(7): 1429–1433.

    [3] E. M. Saber, K. W. Tham, and H. Leibundgut, “A review of high temperature cooling systems in tropical buildings,” Building and Environment, 2016, 96: 237–249.

    [4] P. J. Tannous, S. R. T. Peddada, J. T. Allison, T. Foulkes, R. C. N. Pilawa-Podgurski, and A. G. Alleyne, “Dynamic temperature estimation of power electronics systems,” in IEEE 2017 American Control Conference, Seattle, USA, 2017, pp. 3463–3469.

    [5] I. Fofana and Y. Hadjadj, “Electrical-based diagnostic techniques for assessing insulation condition in aged transformers,” Energies, 2016, 9(9): 679.

    [6] W. Hou, G. Liu, and M. Han, “A novel, high-resolution, high-speed fiber-optic temperature sensor for oceanographic applications,” in 2015 IEEE/OES 11th Current, Waves and Turbulence Measurement, St. Petersburg, USA, 2015, pp. 1–4.

    [7] G. Liu, M. Han, W. Hou, S. Matt, and W. Goode, “A miniature fiber-optic sensor for high-resolution and high-speed temperature sensing in ocean environment,” Proceedings of SPIE: Ocean Sensing and Monitoring VII, 2015, 9459: 80–85.

    [8] G. Liu, Q. Sheng, W. Hou, M. L. Reinke, and M. Han, “A silicon-tipped fiber-optic sensing platform with high resolution and fast response,” Journal of Visualized Experiments, 2019, 143: e59026.

    [9] Z. Liu, “Investigation of silicon-based microstructure Fabry-Perot interferometric optical fiber sensing technology,” Ph.D. dissertation, Dalian University of Technology, Dalian, China, 2020.

    [10] G. X. Ren, X. Y. Wang, and L. B. Du, “Design of high-precision and fast-response temperature measurement system for ocean,” Instrument Technique and Sensor, 2011, 2: 25–47.

    [11] C. S. Monteiro, A. Vaz, D. Viveiros, C. Linhares, S. M. O. Tavares, H. Mendes, et al., “FBG two-dimensional vibration sensor for power transformers,” Proceedings of SPIE: 7th European Workshop on Optical Fibre Sensors, 2019, 11199: 105–108.

    [12] Y. Li, G. Yan, L. Zhang, and S. He, “Microfluidic flowmeter based on micro “hot-wire” sandwiched Fabry-Perot interferometer,” Optics Express, 2015, 23(7): 9483–9493.

    [13] K. Li, J. Xin, F. Luo, and L. Zhu, “Central wavelength interrogation method of ultra-short FBG by dual-wavelength laser,” Laser & Optoelectronics Progress, 2018, 55(3): 030602.

    [14] X. Liu, Q. Li, Y. Zhang, and S. Zhou, “Research of temperature response time hysteresis rule on fiber Bragg grating sensing,” Optical Technique, 2014, 40: 156–159.

    [15] D. Zhang, J. Wang, Y. Wang, and X. Dai, “A fast response temperature sensor based on fiber Bragg grating,” Measurement Science and Technology, 2014, 25(7): 075105.

    [16] H. Meng, H. Y. Li, and Z. Q. Cao, “An optical fiber Farby-Perot temperature sensor for rapid ocean temperature measurement,” Chinese Journal of Lasers-Zhongguo Jiguang, 2018, 45(12): 256–260.

    [17] Y. N. Zhang, L. Yuan, X. W. Lan, A, Kaur, J. Huang, and H. Xiao, “High-temperature fiber-optic Fabry-Perot interferometric pressure sensor fabricated by femtosecond laser,” Optics Letters, 2013, 38(22): 4609–4612.

    [18] G. Liu, Q. Sheng, G. R. L. Piassetta, W. Hou, and M. Han, “A fiber-optic water flow sensor based on laser-heated silicon Fabry-Pérot cavity,” Proceedings of SPIE: Fiber Optic Sensors and Applications XIII, 2016, 9852: 288–294.

    [19] C. Zhu, R. E. Gerald, and J. Huang, “A dual-parameter internally calibrated Fabry-Perot microcavity sensor,” IEEE Sensors Journal, 2020, 2(5): 2511–2517.

    [20] F. Zhao, J. Wang, Y. Xiao, K. Zhang, R. Chen, and S. Liu, “Curvature monitoring of power grid wires based on anti-resonant reflecting guidance in hollow core fibers,” Optik, 2020, 213: 164785.

    [21] N. Cai, L. Xia, and Y. Wu, “Multiplexing of anti-resonant reflecting optical waveguides for temperature sensing based on quartz capillary,” Optics Express, 2018, 26(25): 33501–33509.

    [22] J. H. Wen, J. Wang, L. Yang, Y. F. Hou, D. H. Huo, E. L. Cai, et al., “Response time of microfiber temperature sensor in liquid environment,” IEEE Sensors Journal, 2020, 20(12): 6400–6407.

    [23] X. Zhou and Q. Yu, “Wide-range displacement sensor based on fiber-optic Fabry-Perot interferometer for subnanometer measurement,” IEEE Sensors Journal, 2011, 11(7): 1602–1606.

    [24] H. Chen, J. Liu, X. Zhang, W. Wang, Z. Ma, W. Lv, et al., “High-order harmonic-frequency crosscorrelation algorithm for absolute cavity length interrogation of white-light fiber-optic Fabry-Perot sensors,” Journal of Lightwave Technology, 2020, 38(4): 953–960.

    [25] J. Wang, Y. P. Liao, S. S. Wang, and X. Wang, “Ultrasensitive optical sensing in aqueous solution based on microfiber modal interferometer,” Optics Express, 2018, 26(19): 24843–24853.

    [26] S. W. Lloyd, J. A. Newman, D. R. Wilding, R. H. Selfridge, and S. M. Schultz, “Compact optical fiber sensor smart node,” Review of Scientific Instruments, 2007, 78(3): 035108.

    [27] J. Liu, L. Zhu, W. He, Y. Yang, F. Meng, and Y. Song, “Fiber grating sensing interrogation system based on a modulated grating Y-branch tunable laser for core-and-cladding- integrated fiber Bragg grating temperature measurement,” Review of Scientific Instruments, 2020, 91(1): 014904.

    [28] Y. Cheung, Z. Jing, A. Li, Q. Liu, Y. Liu, Z. Huang, et al., “An integrated fiber-optic white-light interferometry system based on VT-DBR laser,” in IEEE 2021 19th International Conference on Optical Communications and Networks, China, 2021, pp. 1–3.

    [29] Y. Liu, Z. Jing, Q. Liu, A. Li, A. Lee, Y. Cheung, et al., “All-silica fiber-optic temperature-depth-salinity sensor based on cascaded EFPIs and FBG for deep sea exploration,” Optics Express, 2021, 29(15): 23953–23966.

    [30] H. Wu, Q. Meng, J. Li, B. Han, Z. Wang, Y. Rao, et al., “Spectral tailoring of random fiber laser based on the multimode interference filter,” IEEE Access, 2018, 6: 39435–39441.

    [31] K. Iga, “Forty years of vertical-cavity surfaceemitting laser: invention and innovation,” Japanese Journal of Applied Physics, 2018, 57(8S2): 08PA01.

    [32] D. Derickson, M. Bernacil, A. DeKelaita, B. Maher, S. O’Connor, M. N. Sysak, et al., “SGDBR single-chip wavelength tunable lasers for swept source OCT,” Proceedings of SPIE: Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine XII, 2008, 6847: 392–402.

    [33] Y. Liu, Z. Jing, R. Li, Y. Zhang, Q. Liu, A. Li, et al., “Miniature fiber-optic tip pressure sensor assembled by hydroxide catalysis bonding technology,” Optics Express, 2020, 28(2): 948–958.

    [34] G. Liu, M. Han, and W. Hou, “High-resolution and fast-response fiber-optic temperature sensor using silicon Fabry-Pérot cavity,” Optics Express, 2015, 23(6): 7237–7247.

    [35] A. Faghri, Y. Zhang, and J. R. Howell, “Advanced Heat and Mass Transfer,” Columbia: Global Digital Press, 2010.

    [36] M. Akbari, R. Abdi Behnagh, and A. Dadvand, “Effect of materials position on friction stir lap welding of Al to Cu,” Science and Technology of Welding and Joining, 2012, 17(7): 581–588.

    [37] B. Ryningen, M. Bellmann, R. Kvande, and O. Lohne, “The effect of crucible coating and the temperature field on minority carrier lifetime in directionally solidified multicrystalline silicon ingots,” in Proceedings of the 27th European Photovoltaic Solar Energy Conference and Exhibition, Germany, 2012, pp. 24–28.

    [38] S. Reynolds, Material of the month: fused silica [Online]. Available, https://www.swiftglass.com/blog/material-month-fused-silica/, April 2017.

    [39] M. Ding, P. Wang, and G. Brambilla, “Fast-response high-temperature microfiber coupler tip thermometer,” IEEE Photonics Technology Letters, 2012, 24(14): 1209–1211.

    [40] P. Rinaudo, I. Paya-Zaforteza, P. Calderón, and S. Sales, “Experimental and analytical evaluation of the response time of high temperature fiber optic sensors,” Sensors and Actuators A: Physical, 2016, 243: 167–174.

    [41] M. C. Bustillos-Barcaya, G. F. Rinalde, L. A. Bulus-Rossini, and P. A. Costanzo-Caso, “Y-branch tunable laser design: modeling, control and experimental validation,” Optics & Laser Technology, 2021, 140: 107040.

    [42] M. Chacinski, M. Isaksson, and R. Schatz, “High-speed direct Modulation of widely tunable MG-Y laser,” IEEE Photonics Technology Letters, 2005, 17(6): 1157–1159.

    [43] M. Lewander, A. Fried, P. Weibring, D. Richter, S. Spuler, and L. Rippe, “Fast and sensitive time-multiplexed gas sensing of multiple lines using a miniature telecom diode laser between 1 529 nm and 1 565 nm,” Applied Physics B, 2011, 104(3): 715–723.

    [44] N. Li, X. Qiu, Y. Wei, E. Zhang, J. Wang, C. Li, et al., “A portable low-power integrated current and temperature laser controller for high-sensitivity gas sensor applications,” Review of Scientific Instruments, 2018, 89(10): 103103.

    Yang CHEUNG, Zhenguo JING, Qiang LIU, Ang LI, Yueying LIU, Yihang GUO, Sen ZHANG, Dapeng ZHOU, and Wei PENG. Fast-Response Fiber-Optic FPI Temperature Sensing System Based on Modulated Grating Y-Branch Tunable Laser[J]. Photonic Sensors, 2024, 14(1): 240125
    Download Citation