• Photonic Sensors
  • Vol. 9, Issue 3, 213 (2019)
Hai LIU*, Haoran WANG, Wen ZHANG, Cancan CHEN, Qing WANG, Yi DING, and and Shoufeng TANG
Author Affiliations
  • School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China
  • show less
    DOI: 10.1007/s13320-019-0536-y Cite this Article
    Hai LIU, Haoran WANG, Wen ZHANG, Cancan CHEN, Qing WANG, Yi DING, and Shoufeng TANG. High Sensitive Methane Sensor With Temperature Compensation Based on Selectively Liquid-Infiltrated Photonic Crystal Fibers[J]. Photonic Sensors, 2019, 9(3): 213 Copy Citation Text show less
    References

    [1] E. R. Vera, C. M. B. Cordeiro, and P. Torres, “High sensitive temperature sensor using Sagnac loop interferometer based on side-hole photonic crystal fiber filled with metal,” Applied Optics, 2017, 56(2): 156-162.

    [2] J. S. Wang, L. Pei, S. J. Weng, L. Y. Wu, L. Huang, T. G. Ning, et al., “A tunable polarization beam splitter based on magnetic fluids-filled dual-core photonic crystal fiber,” IEEE Photonics Journal, 2017, 9(1): 1-10.

    [3] A. A. Rifat, G. A. Mahdiraji, R. Ahmed, D. M. Chow, Y. M. Sua, Y. G. Shee, et al., “Copper-graphene-based photonic crystal fiber plasmonic biosensor,” IEEE Photonics Journal, 2017, 8(1): 4800408-1-4800408-8.

    [4] M. Shi, S. G. Li, and H. L. Chen, “A high-sensitivity temperature sensor based on Sagnac interferometer employing photonic crystal fiber fully filled with ethanol,” Applied Physics B, 2018, 124(6): 94-1-94-7.

    [5] Q. Liu, S. G. Li, and H. Chen, “Enhanced sensitivity of temperature sensor by a PCF with a defect core based on Sagnac interferometer,” Sensors & Actuators B Chemical, 2018, 254: 636-641.

    [6] G. Q. Zhu, X. M. Li, C. Y. Tao, J. Huang, and J. C. Yang, “Optical fiber methane sensor based on SAN film containing cryptophane-E-(OEt)_6,” Chinese Optics Letters, 2012, 10(10): 100601-1-100601-3.

    [7] J. C. Yang, X. Che, R. Shen, C. Wang, X. M. Li, and W. M. Chen, “High-sensitivity photonic crystal fiber long-period grating methane sensor with cryptophane-A-6Me absorbed on a PAA-CNTs/PAH nanofilm,” Optics Express, 2017, 25(17): 20258-20267.

    [8] J. C. Yang, L. Zhou, J. Huang, C. Y. Tao, X. M. Li, and W. M. Chen, “Sensitivity enhancing of transition mode long-period fiber grating as methane sensor using high refractive index polycarbonate/cryptophane A overlay deposition,” Sensors & Actuators B: Chemical, 2015, 207: 477-480.

    [9] J. C. Yang, L. Zhou, X. Che, J. Huang, X. M. Li, and W. M. Chen, “Photonic crystal fiber methane sensor based on modal interference with an ultraviolet curable fluoro-siloxane nano-film incorporating cryptophane A,” Sensors & Actuators B: Chemical, 2016, 235: 717-722.

    [10] H. Liu, M. Wang, Q. Wang, H. W. Li, Y. Ding, and C. H. Zhu, “Simultaneous measurement of hydrogen and methane based on PCF-SPR structure with compound film-coated side-holes,” Optical Fiber Technology, 2018, 45: 1-7.

    [11] Y. N. Zhang, Y. Zhao, and Q. Wang, “Measurement of methane concentration with cryptophane E infiltrated photonic crystal microcavity,” Sensors & Actuators B: Chemical, 2015, 209(209): 431-437.

    [12] Z. F. Wu, C. T. Zheng, Z. W. Liu, D. Yao, W. X. Zhang, Y. D. Wang, et al., “Investigation of a slow-light enhanced near-infrared absorption spectroscopic Gas sensor, based on hollow-core photonic band-gap fiber,” Sensors, 2018, 18(7): 2192-1-2192-10.

    [13] C. Wang, J. C. Yang, R. Shen, X. M. Li, and W. M. Chen, “High-sensitivity photonic crystal fiber long-period grating methane sensor with cryptophane-A-6Me absorbed on a PAA-CNTs/PAH nanofilm,” Optics Express, 2017, 25(17): 20258-20267.

    [14] M. I. Islam, B. K. Paul, K. Ahmed, M. R. Hasan, S. Chowdhury, M. S. Islam, et al., “Highly birefringent single mode spiral shape photonic crystal fiber based sensor for gas sensing applications,” Sensing and Bio-Sensing Research, 2017, 14(C): 30-38.

    [15] G. F. Yan, L. Zhang, and S. L. He, “Simultaneous measurement of magnetic field and temperature based on an etched TCFMI cascaded with an FBG,” Optics Communications, 2016, 364(2): 150-157.

    [16] J. X. Wu, Y. P. Miao, B. B. Song, W. Lin, K. L. Zhang, H. Zhang, et al., “Simultaneous measurement of displacement and temperature based on thin-core fiber modal interferometer,” Optics Communications, 2015, 340: 136-140.

    [17] S. H. Liu, Z. Wang, M. X. Hou, J. Tian, and J. J. Xia, “Asymmetrically infiltrated twin core photonic crystal fiber for dual-parameter sensing,” Optics & Laser Technology, 2016, 82: 53-56.

    [18] Y. Zhao, D. Wu, R. Q. Lv, and Y. Ying, “Tunable characteristics and mechanism analysis of the magnetic fluid refractive index with applied magnetic field,” IEEE Transactions on Magnetics, 2014, 50(8): 1-5.

    [19] K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” IEEE Journal of Quantum Electronics, 2002, 38(7): 927-933.

    [20] T. Y. Cho, G. H. Kim, K. I. Lee, S. B. Lee, and J. M. Jeong, “Study on the fabrication process of polarization maintaining photonic crystal fibers and their optical properties,” Journal of the Optical Society of Korea, 2008, 12 (1): 19-24.

    [21] J. Ma, H. H. Yu, X. Jiang, and D. S. Jiang, “High-performance temperature sensing using a selectively filled solid-core photonic crystal fiber with a central air-bore,” Optics Experss, 2017, 25(8): 9406-9415.

    [22] J. C. Yang, L. Zhou, X. Che, J. Huang, X. M. Li, and W. M. Chen, “Photonic crystal fiber methane sensor based on modal interference with an ultraviolet curable fluoro-siloxane nano-film incorporating cryptophane A,” Sensors & Actuators B: Chemical, 2016, 235: 717-722.

    [23] K. Naeem, I. B. Kwon, and Y. Chung., “Multibeam interferometer using a photonic crystal fiber with two asymmetric cores for torsion, strain and temperature sensing,” Sensors, 2017, 17(1): 132-1-132-9.

    [24] R. Jha, J. Villatoro, and G. Badenes, “Ultrastable in reflection photonic crystal fiber modal interferometer for accurate refractive index sensing,” Applied Physics Letters, 2008, 93(19): 4057-1-4057-3.

    [25] W. Q. Chen, M. D. Thoreson, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin ultra-smooth and low-loss silver films on a germanium wetting layer,” Optics Express, 2010, 18(5): 5124-5134.

    [26] M. Benounis, N. J. Renault, J. P. Dutasta, K.Cherif, and A. Abdelghani, “Study of a new evanescent wave optical fibre sensor for methane detection based on cryptophane molecules,” Sensors and Actuators B: Chemical, 2005, 107(1): 32-39.

    [27] G. Q. Zhu, X. M. Li, C. Y. Tao, J. Huang, and J. C. Yang, “Optical fiber methane sensor based on SAN film containing cryptophane-E-(OEt)6,” Chinese Optics Letters, 2012, 10(10): 10-12.

    [28] Y. N. Zhang, Y. Zhao, and Q. Wang, “Measurement of methane concentration with cryptophane E infiltrated photonic crystal microcavity,” Sensors and Actuators B: Chemical, 2015, 209: 431-437.

    [29] X. L. Qian, Y. Zhao, Y. N. Zhang, and Q. Wang, “Theoretical research of gas sensing method based on photonic crystal cavity and fiber loop ring-down technique,” Sensors & Actuators B: Chemical, 2016, 228: 665-672.

    [30] D. K. C. Wu, K. J. Lee, V. Pureur, and B. T. Kuhlmey, “Performance of refractive index sensors based on directional couplers in photonic crystal fibers,” Journal of Lightwave Technology, 2013, 31(22): 3500-3510.

    [31] S. K Varshney, K. Saitoh, R. K Sinha, and M. Koshiba, “Coupling characteristics of multicore photonic crystal fiber-based 1 × 4 power splitters,” Journal of Lightwave Technology, 2009, 27(12): 2062-2068.

    [32] Q. Liu, S. G. Li, H. L. Chen, Z. K. Fan, and J. S. Li, “Photonic crystal fiber temperature sensor based on coupling between liquid-core mode and defect mode,” IEEE Photonics Journal, 2015,7(2): 1-9.

    [33] Z. H. Zhang, Y. F. Shi, B. M. Bian, and J. Lu, “Dependence of leaky mode coupling on loss in photonic crystal fiber with hybrid cladding,” Optics Express, 2008, 16(3): 1915-1922.

    [34] B. Shen, P. Q. Yang, X. L. Liu, H. G. Zhang, and S. W. Cao, “Fabrication and characterizations of SAW methane sensor based on cryptophane-E membrane,” Journal of Ambient Intelligence and Humanized Computing, 2018: 1-10.

    Hai LIU, Haoran WANG, Wen ZHANG, Cancan CHEN, Qing WANG, Yi DING, and Shoufeng TANG. High Sensitive Methane Sensor With Temperature Compensation Based on Selectively Liquid-Infiltrated Photonic Crystal Fibers[J]. Photonic Sensors, 2019, 9(3): 213
    Download Citation