• Photonic Sensors
  • Vol. 13, Issue 2, 230231 (2023)
Jiacheng LI1, Shuang LIU1、*, Shenglan WU1, Yong LIU1, and Zhiyong ZHONG2
Author Affiliations
  • 1State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
  • 2School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
  • show less
    DOI: 10.1007/s13320-022-0672-7 Cite this Article
    Jiacheng LI, Shuang LIU, Shenglan WU, Yong LIU, Zhiyong ZHONG. Coupling of Epsilon-Near-Zero Mode to Mushroom-Type Metamaterial for Optimizing Infrared Suppression and Radiative Cooling[J]. Photonic Sensors, 2023, 13(2): 230231 Copy Citation Text show less
    References

    [1] N. Lee, B. Yoon, T. Kim, J. Y. Bae, J. S. Lim, I. Chang, et al., “Multiple resonance metamaterial emitter for deception of infrared emission with enhanced energy dissipation,” ACS Applied Materials & Interfaces, 2020, 12(7): 8862-8869.

    [2] X. Feng, X. Xie, M. Pu, X. Ma, Y. Guo, X. Li, et al., “Hierarchical metamaterials for laser-infraredmicrowave compatible stealth,” Optics Express, 2020, 28(7): 9445-9453.

    [3] K. Tang, X. Wang, K. Dong, Y. Li, J. Li, B. Sun, et al., “A thermal radiation modulation platform by emissivity engineering with graded metal-insulator transition,” Advanced Materials, 2020, 32(36): 1907071.

    [4] N. Lee, T. Kim, J. S. Lim, I. Chang, and H. H. Cho, “Metamaterial-selective emitter for maximizing infrared stealth performance with energy dissipation,” ACS Applied Materials & Interfaces, 2019, 11(23): 21250-21257.

    [5] O. Salihoglu, H. B. Uzlu, O. Yakar, S. Aas, O. Balci, N. Kakenov, et al., “Graphene-based adaptive thermal camouflage,” Nano Letters, 2018, 18(7): 4541-4548.

    [6] L. Zhao, H. Liu, Z. He, and S. Dong, “All-metal frequency-selective absorber/emitter for laser stealth and infrared stealth,” Applied Optics, 2018, 57(8): 1757-1764.

    [7] L. Xiao, H. Ma, J. Liu, W. Zhao, Y. Jia, Q. Zhao, et al., “Fast adaptive thermal stealth based on flexible VO2/Graphene/CNT thin films,” Nano Letters, 2015, 15(12): 8365-8370.

    [8] M. Y. Li, D. Q. Liu, H. F. Cheng, L. Peng, and M. Zu, “Manipulating metals for adaptive thermal camouflage,” Science Advances, 2020, 6(22): eaba3494.

    [9] J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature, 2002, 416(6876): 61-64.

    [10] H. Chalabi, A. Alù, and M. L. Brongersma, “Focused thermal emission from a nanostructured SiC surface,” Physical Review B, 2016, 94(9): 094307.

    [11] S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Physical Review B, 2000, 62(4): R2243.

    [12] C. Luo, A. Narayanaswamy, G. Chen, and J. Joannopoulos, “Thermal radiation from photonic crystals: a direct calculation,” Physical Review Letters, 2004, 93(21): 213905.

    [13] T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nature Materials, 2014, 13(10): 928-931.

    [14] D. Costantini, A. Lefebvre, A. L. Coutrot, I. Moldovan Doyen, J. P. Hugonin, S. Boutami, et al., “Plasmonic metasurface for directional and frequency-selective thermal emission,” Physical Review Applied, 2015, 4(1): 014023.

    [15] X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Physical Review Letters, 2011, 107(4): 045901.

    [16] D. G. Baranov, Y. Xiao, I. A. Nechepurenko, A. Krasnok, A. Alù, and M. A. Kats, “Nanophotonic engineering of far-field thermal emitters,” Nature Materials, 2019, 18(9): 920-930.

    [17] J. P. Nong, L. L. Tang, G. L. Lan, P. Luo, Z. C. Li, D. P. Huang, et al., “Enhanced graphene plasmonic mode energy for highly sensitive molecular fingerprint retrieval,” Laser & Photonics Reviews, 2021, 15(1): 2000300.

    [18] J. P. Nong, L. L. Tang, G. L. Lan, P. Luo, Z. C. Li, D. P. Huang, et al., “Combined visible plasmons of Ag nanoparticles and infrared plasmons of graphene nanoribbons for high-performance surface-enhanced Raman and infrared spectroscopies,” Small, 2021, 17(1): 2004640.

    [19] P. Luo, W. Wei, G. Lan, X. Wei, L. Meng, Y. Liu, et al., “Dynamical manipulation of a dual-polarization plasmon-induced transparency employing an anisotropic graphene-black phosphorus heterostructure,” Optics Express, 2021, 29(19): 29690-29703.

    [20] K. K. Du, Q. Li, Y. B. Lyu, J. C. Ding, Y. Lu, Z. Y. Cheng, et al., “Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST,” Light: Science Applications, 2017, 6(1): e16194.

    [21] W. Streyer, S. Law, G. Rooney, T. Jacobs, and D. Wasserman, “Strong absorption and selective emission from engineered metals with dielectric coatings,” Optics Express, 2013, 21(7): 9113-9122.

    [22] T. Kim, J. Y. Bae, N. Lee, and H. H. Cho, “Hierarchical metamaterials for multispectral stealth of infrared and microwaves,” Advanced Function Materials, 2019, 29(10): 1807319.

    [23] L. Peng, D. Q. Liu, H. F. Cheng, S. Zhou, and M. Zu, “A multilayer film based selective thermal emitter for infrared stealth technology,” Advanced Optical Materials, 2018, 6(23): 1801006.

    [24] M. Pan, Y. Huang, Q. Li, H. Luo, H. Zhu, S. Kaur, et al., “Multi-band middle-infrared-compatible stealth with thermal management via simple photonic structures,” Nano Energy, 2020, 69: 104449.

    [25] N. Fang, H. Lee, C. Sun, and X. Zhang, “Subdiffraction- limited optical imaging with a silver superlens,” Science, 2005, 308(5721): 534-537.

    [26] X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science, 2015, 349(6254): 1310-1314.

    [27] N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Physical Review Letters, 2008, 100(20): 207402.

    [28] J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Physical Review B, 2011, 83(16): 165107.

    [29] X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Physical Review Letters, 2010, 104(20): 207403.

    [30] N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Letters, 2010, 10(7): 2342-2348.

    [31] J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Applied Physics Letters, 2011, 98(24): 241105.

    [32] A. Tittl, A. K. U. Michel, M. Schoferling, X. H. Yin, B. Gholipour, L. Cui, et al., “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Advanced Materials, 2015, 27(31): 4597-4603.

    [33] I. Puscasu and W. L. Schaich, “Narrow-band, tunable infrared emission from arrays of microstrip patches,” Applied Physics Letters, 2008, 92(23): 233102.

    [34] G. Ok, H. Youn, M. K. Kwak, K. Lee, Y. J. Shin, L. J. Guo, et al., “Continuous and scalable fabrication of flexible metamaterial films via roll-to-roll nanoimprint process for broadband plasmonic infrared filters,” Applied Physics Letters, 2012, 101(22): 223102.

    [35] J. R. Hendrickson, S. Vangala, C. Dass, R. Gibson, J. Goldsmith, K. Leedy, et al., “Coupling of epsilon-near-zero mode to gap plasmon mode for flat-top wideband perfect light absorption,” ACS Photonics, 2018, 5 (3): 776-781.

    [36] Y. Li, P. Zhang, Y. Liu, R. Jiang, Y. Gong, L. Deng, et al., “Infrared epsilon-near-zero absorption excited by magnetic dipole resonance,” Optics Communications, 2020, 472: 126015.

    [38] E. D. Palik, Handbook of optical constants of solids.San Diego: Academic Press, 1998.

    [39] A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Applied Optics, 1998, 37(22): 5271-5283.

    [40] G. Kirchhoff, “On the relation between the radiating and the absorbing powers of different bodies for light and heat,” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1860, 20: 1-21.

    [41] J. Park, J. H. Kang, X. Liu, and M. L. Brongersma, “Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers,” Scientific Reports, 2015, 5(1): 1-9.

    [42] Y. B. Chen and F. C. Chiu, “Trapping mid-infrared rays in a lossy film with the Berreman mode, epsilon near zero mode, and magnetic polaritons,” Optics Express, 2013, 21(18): 20771-20785.

    [43] D. Yoo, F. de León-Pérez, M. Pelton, I. H. Lee, D. A. Mohr, M. B. Raschke, et al., “Ultrastrong plasmon-phonon coupling via epsilon-near-zero nanocavities,” Nature Photonics, 2021, 15(2): 125-130.

    [44] S. Basu, B. J. Lee, and Z. M. Zhang, “Infrared radiative properties of heavily doped silicon at room temperature,” ASME Journal of Heat Transfer, 2010, 132(2): 023301.

    Jiacheng LI, Shuang LIU, Shenglan WU, Yong LIU, Zhiyong ZHONG. Coupling of Epsilon-Near-Zero Mode to Mushroom-Type Metamaterial for Optimizing Infrared Suppression and Radiative Cooling[J]. Photonic Sensors, 2023, 13(2): 230231
    Download Citation