• Laser & Optoelectronics Progress
  • Vol. 53, Issue 9, 91402 (2016)
Wang Cheng*, Hu Jiacheng, Xu Yangjian, and Wang Xiaogui
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop53.091402 Cite this Article Set citation alerts
    Wang Cheng, Hu Jiacheng, Xu Yangjian, Wang Xiaogui. Numerical Study of Repetitive Laser Shock Peening of Oxygen-Free High-Conductivity Copper[J]. Laser & Optoelectronics Progress, 2016, 53(9): 91402 Copy Citation Text show less
    References

    [1] Zhou Jianzhong, Fan Yujie, Huang Shu, et al. Research and prospect on micro-scale laser shot peening[J]. Chinese J Lasers, 2011, 38(6): 0601003.

    [2] Chen Jufang, Li Xingcheng, Zhou Jinyu, et al. Research on corrosion resistance and mechanism of strengthened layer on AM50 Mg alloy surface processed by laser shot peening[J]. Chinese J Lasers, 2011, 38(12): 1203001.

    [3] Chai Yan, Ren Jun, He Weifeng, et al. Effect of laser shock processing on the fatigue property of K4030 alloy blade[J]. Laser & Optoelectronics Progress, 2014, 51(1): 011405.

    [4] Su Chun, Zhou Jianzhong, Huang Shu, et al. Influence of laser shock processing on fatigue properties of 6061-T6 aluminum alloy TIG welded joints[J]. Laser & Optoelectronics Progress, 2015, 52(6): 061403.

    [5] Braisted W, Brockman R. Finite element simulation of laser shot peening[J]. International Journal of Fatigue, 1999, 21: 719-724.

    [6] Peyre P, Chaieb I, Braham C. FEM calculation of residual stresses induced by laser shock processing in stainless steels[J]. Modelling and Simulation in Materials Science and Engineering, 2007, 15: 205-221.

    [7] Huang Shu, Zhou Jianzhong, Jiang Suqin, et al. Dynamic analysis on stresses in metal caused by laser shot peening[J]. Chinese J Lasers, 2010, 37(1): 256-260.

    [8] Fang Y W, Li Y H, He W F, et al. Effects of laser shock processing with different parameters and ways on residual stresses fields of a TC4 alloy blade[J]. Materials Science & Engineering A, 2013, 559: 683-692.

    [9] Yang Xiaodong. Numerical simulation and experimental study on massive laser shot peening[D]. Zhenjiang: Jiangsu University, 2011: 24-30.

    [10] Dai F Z, Lu J Z, Zhang Y K, et al. Effect of laser spot size on the residual stress field of pure Al treated by laser shock processing: Simulations[J]. Applied Surface Science, 2014, 316: 477-483.

    [11] Amarchinta H K, Grandhi R V, Clauer A H, et al. Simulation of residual stress induced by a laser peening process through inverse optimization of material models[J]. Journal of Materials Processing Technology, 2010, 210(14): 1997-2006.

    [12] Hfaiedh N, Peyre P, Song H. et al. Finite element analysis of laser shock peening of 2050-T8 aluminum alloy[J]. International Journal of Fatigue, 2015, 70: 480-489.

    [13] Fang Y W, Li Y H, He W F, et al. Numerical simulation of residual stresses fields of DD6 blade during laser shock processing[J]. Materials & Design, 2013, 43: 170-176.

    [14] Wei X L, Ling X. Numerical modeling of residual stress induced by laser shock processing[J]. Applied Surface Science, 2014, 301: 557-563.

    [15] Hu Y X, Yao Z Q, Hu J.3-D FEM simulation of laser shock processing[J]. Surface and Coatings Technology, 2006, 201(3): 1426-1435.

    [16] Zhang Xingquan, Zhang Yongkang, Zhou Jianzhong, et al. Experimental investigation on distribution of residual stress induced by intense laser[J]. Journal of Jiangsu University (Natural Science Edition), 2006, 27(6): 485-488.

    [17] Li K M, Hu Y X, Yao Z Q. Experimental study of micro dimple fabrication based on laser shock processing[J]. Optics & Laser Technology, 2013, 48: 216-225.

    [18] Wang C, Wang X G, Xu Y J, et al. Numerical modeling of the confined laser shock peening of the OFHC copper[J]. International Journal of Mechanical Sciences, 2016, 108: 104-114.

    [19] Ding K, Ye L. Simulation of multiple laser shock peening of a 35CD4 steel alloy[J]. Journal of Materials Processing Technology, 2006, 178(1): 162-169.

    [20] Zhang W W, Yao Y L. Micro scale laser shock processing of metallic components[J]. Journal of Manufacturing Science and Engineering, 2002, 124: 369-378.

    [21] Fabbro R, Fournier J, Ballard P, et al. Physical study of laser-produced plasma in confined geometry[J]. Journal of Applied Physics, 1990, 68(2): 775-784.

    [22] Peyre P, Sollier A, Chaieb I, et al. FEM simulation of residual stresses induced by laser peening[J]. The European physical Journal Applied Physics, 2003, 23(2): 83-88.

    [23] Gao C Y, Zhang L C. Constitutive modelling of plasticity of fcc metals under extremely high strain rates[J]. International Journal of Plasticity, 2012, 32: 121-133.

    [24] Fan Y, Osetsky Y N, Yip S, et al. Onset mechanism of strain-rate-induced flow stress upturn[J]. Physical Review Letters, 2012, 109(13): 135503.

    [25] Kim J H, Kim Y J, Lee J W, et al. Study on effect of time parameters of laser shot peening on residual stresses using FE simulation[J]. Journal of Mechanical Science and Technology, 2014, 28(5): 1803-1810.

    [26] Kim J H, Kim Y J, Kim J S. Effects of simulation parameters on residual stresses for laser shot peening finite element analysis[J]. Journal of Mechanical Science and Technology, 2013, 27(7): 2025-2034.

    [27] Ding K, Ye L. Three-dimensional dynamic finite element analysis of multiple laser shock peening processes[J]. Surface Engineering, 2003, 19(5): 351-358.

    [28] Fu Yonghong, Liu Qiangxian, Ye Yunxia, et al. Research on laser surface micro texturing processing of single pulse intervals[J]. Chinese J Lasers, 2015, 42(12): 1203005.

    [29] Correa C, Peral D, Porro J A, et al. Random-type scanning patterns in laser shock peening without absorbing coating in 2024-T351 Al alloy: A solution to reduce residual stress anisotropy[J]. Optics & Laser Technology, 2015, 73: 179-187.

    Wang Cheng, Hu Jiacheng, Xu Yangjian, Wang Xiaogui. Numerical Study of Repetitive Laser Shock Peening of Oxygen-Free High-Conductivity Copper[J]. Laser & Optoelectronics Progress, 2016, 53(9): 91402
    Download Citation