• Photonic Sensors
  • Vol. 9, Issue 2, 162 (2019)
Nurul Asha1、*, Kok Sing1, Yen Sian1, Muhammad Aizi2, and Harith AHMAD1
Author Affiliations
  • 1Photonics Research Centre, University of Malaya, Kuala Lumpur 50603, Malaysia
  • 2Laser Center, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
  • show less
    DOI: 10.1007/s13320-018-0527-4 Cite this Article
    Nurul Asha, Kok Sing, Yen Sian, Muhammad Aizi, Harith AHMAD. Influence of Internal Stresses in Few-Mode Fiber on the Thermal Characteristics of Regenerated Gratings[J]. Photonic Sensors, 2019, 9(2): 162 Copy Citation Text show less
    References

    [1] T. C. Hsiao, T. S. Hsieh, Y. C. Chen, S. C. Huang, and C. C. Chiang, “Metal-coated fiber Bragg grating for dynamic temperature sensor,” Optik, 2016, 127(22): 10740–10745.

    [2] Y. L. Li, K. Yang, and X. W. Li, “Temperature sensing characteristics of metal coated FBG during dynamic cooling process,” Optical Fiber Technology, 2018, 45: 368–375.

    [3] D. S. Gunawardena, M. H. Lai, K. S. Lim, A. Malekmohammadi, and H. Ahmad, “Fabrication of thermal enduring FBG sensor based on thermal induced reversible effect,” Sensors and Actuators A: Physical, 2016, 242: 111–115.

    [4] J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings,” Sensors, 2008, 8(10): 6448–6452.

    [5] S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors, 2012, 12(2): 1898.1918.

    [6] M. Fokine, “Formation of thermally stable chemical composition gratings in optical fibers,” Journal of the Optical Society of America B, 2002, 19(8): 1759.1765.

    [7] B. Zhang and M. Kahrizi, “High-temperature resistance fiber Bragg grating,” IEEE Sensors Journal, 2007, 7(4): 586–591.

    [8] S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, “Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193nm,” Optics Letters, 2008, 33(16): 1917–1919.

    [9] H. Z. Yang, X. G. Qiao, S. Das, and M. C. Paul, “Thermal regenerated grating operation at temperatures up to 1400 ℃ using new class of multimaterial glass-based photosensitive fiber,” Optics Letters, 2014, 39(22): 6438–6441.

    [10] N. A. M. Nazal, K. S. Lim, M. K. A. Zaini, H. Z. Yang, and H. Ahmad, “Formation of enhanced regenerated grating in few-mode fiber by CO2 laser pretreatment,” Applied Optics, 2017, 56(36): 9882.9887.

    [11] A. Li, A. Al Amin, X. Chen, and W. Shieh, “Transmission of 107 Gb/s mode and polarization multiplexed CO-OFDM signal over a two-mode fiber,” Optics Express, 2011, 19(9): 8808.8814.

    [12] A. Li, A. Al Amin, X. Chen, S. Chen, G. Gao, and W. Shieh, “Reception of dual-spatial-mode CO-OFDM signal over a two-mode fiber,” Journal of Lightwave Technology, 2012, 30(4): 634–640.

    [13] C. Koebele, M. Salsi, D. Sperti, P. Tran, P. Brindel, H. Mardoyan, et al., “Two mode transmission at 2.100Gb/s, over 40 km-long prototype few-mode fiber, using LCOS-based programmable mode multiplexer and demultiplexer,” Optics Express, 2011, 19(17): 16593.16600.

    [14] B. Y. Kim, “Few-mode fiber devices,” Optical Fiber Sensors, 1988, 2: 1.463.

    [15] A. Li, Y. Wang, Q. Hu, and W. Shieh, “Few-mode fiber based optical sensors,” Optics Express, 2015, 23(2): 1139.1150.

    [16] N. A. M. Nazal, M. H. Lai, K. S. Lim, D. S. Gunawardena, W. Y. Chong, H. Z. Yang, et al., “Demarcation energy properties of regenerated fiber Bragg grating sensors in few-mode fibers,” Optics Applicata, 2018, 48(2): 263.271.

    [17] P. Chu and R. Sammut, “Analytical method for calculation of stresses and material birefringence in polarization-maintaining optical fiber,” Journal of Lightwave Technology, 1984, 2(5): 650–662.

    [18] K. S. Lim, Y. H. Zhou, W. Y. Chong, C. Y. Ken, C. H. Lim, N. M. Ali, et al., “Axial contraction in etched optical fiber due to internal stress reduction,” Optics Express, 2013, 21(3): 2551–2562.

    [19] M. K. A. Zaini, Y. S. Lee, K. S. Lim, N. A. M. Nazal, M. H. Zohari, and H. Ahmad, “Axial stress profiling for few-mode fiber Bragg grating based on resonant wavelength shifts during etching process,” Journal of the Optical Society of America B, 2017, 34(9): 1894.1898.

    [20] T. Mizunami, T. V. Djambova, T. Niiho, and S. Gupta, “Bragg gratings in multimode and few-mode optical fibers,” Journal of Lightwave Technology, 2000, 18(2): 230–235.

    [21] D. Ganziy, O. Jespersen, G. Woyessa, B. Rose, and O. Bang, “Dynamic gate algorithm for multimode fiber Bragg grating sensor systems,” Applied Optics, 2015, 54(18): 5657.5661.

    [22] M. H. Lai, K. S. Lim, D. S. Gunawardena, and H. Z. Yang, “Thermal stress modification in regenerated fiber Bragg grating via manipulation of glass transition temperature based on CO2-laser annealing,” Optics Letters, 2015, 40(5): 748–751.

    [23] I. H. Shin, B. H. Kim, S. P. Veetil, W. T. Han, and D. Y. Kim, “Residual stress relaxation in cleaved fibers,” Optics Communications, 2008, 281(1): 75–79.

    [24] B. H. Kim, Y. Park, T. J. Ahn, D. Kim, B. H. Lee, Y. Chung, et al., “Residual stress relaxation in the core of optical fiber by CO2 laser irradiation,” Optics Letters, 2001, 26(21): 1657–1659.

    [25] J. A. Bucaro and H. D. Dardy, “High-temperature Brillouin scattering in fused quartz,” Journal of Applied Physics, 1974, 45(12): 5324–5329.

    Nurul Asha, Kok Sing, Yen Sian, Muhammad Aizi, Harith AHMAD. Influence of Internal Stresses in Few-Mode Fiber on the Thermal Characteristics of Regenerated Gratings[J]. Photonic Sensors, 2019, 9(2): 162
    Download Citation