• Infrared and Laser Engineering
  • Vol. 46, Issue 3, 321001 (2017)
Shen Yan, Xie Yi, Lou Shuqin, Wang Xin, and Zhao Tongtong
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/irla201746.0321001 Cite this Article
    Shen Yan, Xie Yi, Lou Shuqin, Wang Xin, Zhao Tongtong. Evaluation of optical properties of PCFs based on compressed sensing with Contourlet transform[J]. Infrared and Laser Engineering, 2017, 46(3): 321001 Copy Citation Text show less
    References

    [1] Knight J C, Birks T A, Russell P S J, et al. All-silica single-mode optical fiber with photonic crystal cladding[J]. Optics Letters, 1996, 21(19): 1547-1549.

    [2] Jones D C, Bennett C R, Smith M A, et al. High-power beam transport through a hollow-core photonic bandgap fiber[J]. Optics Letters, 2014, 39(11): 3122-3125.

    [3] Lou S Q, Lu W L, Wang X. A novel bend-resistant large-mode-area photonic crystal fiber[J]. Acta Phys, 2013, 62(4): 044225.

    [4] Fokoua E N, Sandoghchi S R, Chen Y, et al. Accurate modelling of fabricated hollow-core photonic bandgap fibers[J]. Optics Express, 2015, 23(18): 23117.

    [5] Wang L W, Lou S Q, Chen W G, et al. A novel method for rapidly modeling optical properties of actual photonic crystal fibers[J]. Chinese Physics B, 2010, 19(8): 1-7.

    [6] Shen Y, Lou S Q, Wang X. Novel estimation method of point spread function based on Kalman filter for accurately evaluating real optical properties of photonic crystal fibers[J]. Applied Optics, 2014, 53(9): 1838-1845.

    [7] Zhang Q, Maldague X. An adaptive fusion approach for infrared and visible images based on NSCT and compressed sensing[J]. Infrared Physics & Technology, 2016, 74: 11-20.

    [8] Hao W L, Li J W, Dong Z C. An empirical study on compressed sensing MRI using fast composite splitting algorithm and combined sparsifying transforms[J]. International Journal of Imaging Systems and Technology, 2015, 25(4): 302-309.

    [9] Yang B X, Yuan M, Ma Y D. Local sparsity enhanced compressed sensing magnetic resonance imaging in uniform discrete curvelet domain[J]. BMC Medical Imaging, 2015, 15(28): 1-17.

    [10] Liu L K, Chan S H, Nguyen T Q. Depth reconstruction from sparse samples: representation, algorithm, and sampling[J]. IEEE Transactions on Image Processing, 2015, 24(6): 1983-1996.

    [11] Shen Y, Chen H J, Yao C, et al. Super-resolution reconstruction of compressed sensing mammogram based on contourlet transform[C]//SPIE, 2013, 8750: 87500M.

    [12] Hosseini M S, Plataniotis K N. High-accuracy total variation with application to compressed video sensing[J]. IEEE Trans on Image Processing, 2014, 23(9): 3869-3884.

    [13] Candes E J, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Trans on Information Theory, 2006, 52(1): 489-509.

    [14] Liu Y L, Mi T B, Li S D. Compressed sensing with general frames via optimal-dual-based-analysis[J]. IEEE Transactions on Information Theory, 2012, 58(7): 4201-4214.

    [15] Do M N, Vetterli M. The Contourlet transform: an efficient directional multiresolution image representation[J]. IEEE Transactions on Image Processing, 2005, 14(12): 2091-2106.

    [16] Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms[J]. Physica D, 1992, 60: 259-268.

    [17] Getreuer P. Total variation deconvolution using split Bregman[J]. Image Processing on Line, 2012, 2: 158-174.

    [18] Shen Y, Wang X, Lou S Q, et al. Evaluation of optical properties for real photonic crystal fiber based on total variation in wavelet domain[J]. Optical Fiber Technology, 2016, 31: 1-12.

    Shen Yan, Xie Yi, Lou Shuqin, Wang Xin, Zhao Tongtong. Evaluation of optical properties of PCFs based on compressed sensing with Contourlet transform[J]. Infrared and Laser Engineering, 2017, 46(3): 321001
    Download Citation