• Optical Instruments
  • Vol. 45, Issue 3, 1 (2023)
Jiong XU1,2 and Xiaofei ZANG1,2,*
Author Affiliations
  • 1Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
  • 2School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • show less
    DOI: 10.3969/j.issn.1005-5630.2023.003.001 Cite this Article
    Jiong XU, Xiaofei ZANG. Research on topological edge state in a non-Hermitian system based on the Kekulé lattice[J]. Optical Instruments, 2023, 45(3): 1 Copy Citation Text show less
    References

    [1] KLITZING K V, DORDA G, PEPPER M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance[J]. Physical Review Letters, 45, 494-497(1980).

    [2] KOHMOTO M. Topological invariant and the quantization of the Hall conductance[J]. Annals of Physics, 160, 343-354(1985).

    [3] LU L, JOANNOPOULOS J D, SOLJAČIĆ M. Topological photonics[J]. Nature Photonics, 8, 821-829(2014).

    [4] LU L, JOANNOPOULOS J D, SOLJAČIĆ M. Topological states in photonic systems[J]. Nature Physics, 12, 626-629(2016).

    [5] HALDANE F D M. Nobel lecture: topological quantum matter[J]. Reviews of Modern Physics, 89, 040502(2017).

    [6] BERNEVIG B A, HUGHES T L, ZHANG S C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells[J]. Science, 314, 1757-1761(2006).

    [7] WANG Z, CHONG Y D, JOANNOPOULOS J D, et al. Reflection-free one-way edge modes in a gyromagnetic photonic crystal[J]. Physical Review Letters, 100, 013905(2008).

    [8] WANG Z, CHONG Y D, JOANNOPOULOS J D, et al. Observation of unidirectional backscattering-immune topological electromagnetic states[J]. Nature, 461, 772-775(2009).

    [9] KANE C L, MELE E J. Z2 topological order and the quantum spin Hall effect[J]. Physical Review Letters, 95, 146802(2005).

    [10] KANE C L, MELE E J. Quantum spin Hall effect in graphene[J]. Physical Review Letters, 95, 226801(2005).

    [11] LU J Y, QIU C Y, KE M Z, et al. Valley vortex states in sonic crystals[J]. Physical Review Letters, 116, 093901(2016).

    [12] OCHIAI T, ONODA M. Photonic analog of graphene model and its extension: Dirac cone, symmetry, and edge states[J]. Physical Review B, 80, 155103(2009).

    [13] CEJNAR P, HEINZE S, MACEK M. Coulomb analogy for non-Hermitian degeneracies near quantum phase transitions[J]. Physical Review Letters, 99, 100601(2007).

    [14] HEISS W D. The physics of exceptional points[J]. Journal of Physics A: Mathematical and Theoretical, 45, 444016(2012).

    [15] SHEN H T, ZHEN B, FU L. Topological band theory for non-Hermitian Hamiltonians[J]. Physical Review Letters, 120, 146402(2018).

    [16] WAN X G, TURNER A M, VISHWANATH A, et al. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates[J]. Physical Review B, 83, 205101(2011).

    [17] NAGAI Y, QI Y, ISOBE H, et al. DMFT reveals the non-Hermitian topology and Fermi arcs in heavy-fermion systems[J]. Physical Review Letters, 125, 227204(2020).

    [18] HOU C Y, CHAMON C, MUDRY C. Electron fractionalization in two-dimensional graphenelike structures[J]. Physical Review Letters, 98, 186809(2007).

    [19] BAO C H, ZHANG H Y, ZHANG T, et al. Experimental evidence of chiral symmetry breaking in Kekulé-ordered graphene[J]. Physical Review Letters, 126, 206804(2021).

    [20] FREENEY S, VAN DEN BROEKE J J, HARSVELD VAN DER VEEN A J J, et al. Edge-dependent topology in Kekulé lattices[J]. Physical Review Letters, 124, 236404(2020).

    [21] XU Q Y, LIU F, CHEN C Z, et al. Edge states in a non-Hermitian topological crystalline insulator[J]. Physical Review B, 105, 075411(2022).

    [22] SU W P, SCHRIEFFER J R, HEEGER A J. Solitons in polyacetylene[J]. Physical Review Letters, 42, 1698(1979).

    Jiong XU, Xiaofei ZANG. Research on topological edge state in a non-Hermitian system based on the Kekulé lattice[J]. Optical Instruments, 2023, 45(3): 1
    Download Citation