• Matter and Radiation at Extremes
  • Vol. 6, Issue 2, 025902 (2021)
V. T. Tikhonchuk1、2、a), T. Gong3, N. Jourdain1, O. Renner1、4, F. P. Condamine1, K. Q. Pan3, W. Nazarov5, L. Hudec6, J. Limpouch6, R. Liska6, M. Krůs4, F. Wang3, D. Yang3, S. W. Li3, Z. C. Li3, Z. Y. Guan3, Y. G. Liu3, T. Xu3, X. S. Peng3, X. M. Liu3, Y. L. Li3, J. Li3, T. M. Song3, J. M. Yang3, S. E. Jiang3, B. H. Zhang3, W. Y. Huo7, G. Ren7, Y. H. Chen7, W. Zheng7, Y. K. Ding7, K. Lan7、8, and S. Weber1、9
Author Affiliations
  • 1ELI-Beamlines, Institute of Physics, Czech Academy of Sciences, 25241 Dolní Břežany, Czech Republic
  • 2Centre Lasers Intenses et Applications, University of Bordeaux–CNRS–CEA, 33405 Talence, France
  • 3Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China
  • 4Institute of Plasma Physics, Czech Academy of Sciences, 18200 Prague, Czech Republic
  • 5Independent Foam Target Supplier, Carnoustie, DD7 6DP, United Kingdom
  • 6Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, 11519 Prague, Czech Republic
  • 7Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
  • 8Center for Applied Physics and Technology, Peking University, Beijing 100871, China
  • 9School of Science, Xi’an Jiaotong University, Xi’an 710049, China
  • show less
    DOI: 10.1063/5.0023006 Cite this Article
    V. T. Tikhonchuk, T. Gong, N. Jourdain, O. Renner, F. P. Condamine, K. Q. Pan, W. Nazarov, L. Hudec, J. Limpouch, R. Liska, M. Krůs, F. Wang, D. Yang, S. W. Li, Z. C. Li, Z. Y. Guan, Y. G. Liu, T. Xu, X. S. Peng, X. M. Liu, Y. L. Li, J. Li, T. M. Song, J. M. Yang, S. E. Jiang, B. H. Zhang, W. Y. Huo, G. Ren, Y. H. Chen, W. Zheng, Y. K. Ding, K. Lan, S. Weber. Studies of laser-plasma interaction physics with low-density targets for direct-drive inertial confinement fusion on the Shenguang III prototype[J]. Matter and Radiation at Extremes, 2021, 6(2): 025902 Copy Citation Text show less
    References

    [1] J. Zheng, B. Zhao, T. Gong, G.-Y. Hu, Z. Li. Noise sources and competition between stimulated Brillouin and Raman scattering: A one-dimensional steady-state approach. Phys. Plasmas, 20, 092702(2013).

    [2] W. Zhou, B. Bi, W. Wang, L. Shan, D. Liu, C. Tian, B. Zhang, B. Zhang, Y. Gu, F. Zhang. Realization of high irradiation uniformity for direct drive ICF at the SG-III prototype laser facility. Eur. Phys. J. D, 69, 54(2015).

    [3] F. Wang, T. Gong, H. Cai, Y. Ding, R. Zhang, L. Hao, Y. Zhang, X. Peng, Z. Wang, Y. Li, X. Jiang, P. Li, J. Yang, Z. Liu, C. Zheng, X. Li, Q. Li, Y. Liu, S. Li, J. Zheng, F. Wang, S. Zou, S. Liu, D. Wang, L. Guo, T. Xu, D. Yang, S. Jiang, X. Liu, B. Zhang, Z. Li. Recent research progress of laser plasma interactions in Shenguang laser facilities. Matter Radiat. Extremes, 4, 055202(2019).

    [4] C. Labaune. Effect of the laser wavelength: A long story of laser-plasma interaction physics for Inertial Confinement Fusion Teller Medal Lecture. EPJ Web Conf., 59, 01012(2013).

    [5] W. Seka, D. H. Froula, J. F. Myatt, D. H. Edgell, C. Stoeckl, P.-Y. Chang, S. X. Hu, F. J. Marshall, R. S. Craxton, B. Yaakobi, A. Solodov. Fast-electron generation in long-scale-length plasmas. Phys. Plasmas, 19, 012704(2012).

    [6] A. V. Maximov, J. F. Myatt, I. V. Igumenshchev, D. E. Hinkel, D. H. Edgell, P. Michel, D. T. Michel, D. H. Froula, R. W. Short, J. D. Moody, J. Zhang, W. Seka. Multiple-beam laser–plasma interactions in inertial confinement fusion. Phys. Plasmas, 21, 055501(2014).

    [7] B. Yaakobi, J. G. Shaw, J. F. Myatt, R. K. Follett, D. H. Edgell, D. H. Froula, D. T. Michel, A. A. Solodov. Simulations and measurements of hot-electron generation driven by the multibeam two-plasmon-decay instability. Phys. Plasmas, 24, 102134(2017).

    [8] M. Lafon, D. T. Michel, A. Casner, D. Mangino, R. C. Nora, C. Stoeckl, W. Seka, R. Betti, X. Ribeyre, F. N. Beg, A. Colaïtis, C. Ren, E. Llor Aisa, V. Tikhonchuk, R. Yan, A. R. Christopherson, W. Theobald, A. Bose, M. S. Wei, J. Peebles, W. Shang. Enhanced hot-electron production and strong-shock generation in hydrogen-rich ablators for shock ignition. Phys. Plasmas, 24, 120702(2017).

    [9] A. Heron, V. T. Tikhonchuk, C. Riconda, S. Weber, O. Klimo. Fast saturation of the two-plasmon-decay instability for shock-ignition conditions. Phys. Rev. E, 85, 016403(2012).

    [10] E. A. Williams, B. B. Afeyan. Unified theory of stimulated Raman scattering and two-plasmon decay in inhomogeneous plasmas: High frequency hybrid instability. Phys. Rev. Lett., 75, 4218(1995).

    [11] M. Hohenberger, X. Ribeyre, C. Labaune, D. Batani, A. Casner, S. Baton, G. Schurtz, W. Theobald, O. Klimo, M. Koenig, S. Depierreux, V. T. Tikhonchuk, C. Rousseaux. Physics issues for shock ignition. Nucl. Fusion, 54, 054009(2014).

    [12] S. Weber, C. Riconda. Temperature dependence of parametric instabilities in the context of the shock-ignition approach to inertial confinement fusion. High Power Laser Sci. Eng., 3, e6(2015).

    [13] A. Héron, V. T. Tikhonchuk, S. Weber, C. Riconda. Kinetic simulations of stimulated Raman backscattering and related processes for the shock-ignition approach to inertial confinement fusion. Phys. Plasmas, 18, 092701(2011).

    [14] S. Weber, C. Riconda. Raman–Brillouin interplay for inertial confinement fusion relevant laser–plasma interaction. High Power Laser Sci. Eng., 4, e23(2016).

    [15] O. Klimo, V. T. Tikhonchuk, J. Limpouch, S. Weber. Particle-in-cell simulations of laser-plasma interaction for the shock ignition scenario. Plasma Phys. Controlled Fusion, 52, 055013(2010).

    [16] O. Klimo, V. T. Tikhonchuk. Laser-plasma interaction studies in the context of shock ignition: The regime dominated by parametric instabilities. Plasma Phys. Controlled Fusion, 55, 095002(2013).

    [17] O. Klimo, V. T. Tikhonchuk, J. Psikal, S. Weber. Two-dimensional simulations of laser–plasma interaction and hot electron generation in the context of shock-ignition research. Plasma Phys. Controlled Fusion, 56, 055010(2014).

    [18] Y. J. Gu, Ph. Nicolaï, O. Klimo, S. Weber, V. T. Tikhonchuk, S. Shekhanov. Collective absorption of laser radiation in plasma at sub-relativistic intensities. High Power Laser Sci. Eng., 7, e39(2019).

    [19] P. Romary, C. Labaune, C. Meyer, S. Hüller, E. Alozy, G. Riazuelo, Ph. Nicolaï, J. Limpouch, D. Pesme, S. Depierreux, G. Thiell, C. Riconda, C. Stenz, P. Loiseau, W. Nazarov, B. Villette, R. Wrobel, P. Di-Nicola, N. G. Borisenko, S. Weber, C. Reverdin, D. T. Michel, G. Soullie, M. Casanova, V. T. Tikhonchuk, M. Grech. Laser smoothing and imprint reduction with a foam layer in the multikilojoule regime. Phys. Rev. Lett., 102, 195005(2009).

    [20] R. Bahr, A. Orekhov, V. Tassin, C. Baccou, G. Tran, V. Tikhonchuk, W. Seka, J. Katz, C. Stoeckl, S. Hüller, D. Pesme, P.-E. Masson-Laborde, A. Colaïtis, C. Neuville, C. Labaune, M. Casanova, A. Héron, G. Duchateau, A. Debayle, Ph. Nicolaï, S. Depierreux, C. Riconda, P. Loiseau, N. Borisenko. Experimental investigation of the collective Raman scattering of multiple laser beams in inhomogeneous plasmas. Phys. Rev. Lett., 117, 235002(2016).

    [21] J. E. Ralph, W. Seka, E. M. Campbell, P. Michel, C. Goyon, A. A. Solodov, R. W. Short, M. Hohenberger, R. Epstein, M. A. Barrios, J. D. Moody, T. Chapman, J. F. Myatt, J. W. Bates, S. P. Regan, M. J. Rosenberg. Origins and scaling of hot-electron preheat in ignition-scale direct-drive inertial confinement fusion experiments. Phys. Rev. Lett., 120, 055001(2018).

    [22] C. S. A. Musgrave, K. Nagai, W. Nazarov. A review of low density porous materials used in laser plasma experiments. Phys. Plasmas, 25, 030501(2018).

    [23] M. W. Jones, J. Edwards, O. Willi, M. Dunne, M. Desselberger. Use of x-ray preheated foam layers to reduce beam structure imprint in laser-driven targets. Phys. Rev. Lett., 74, 2961(1995).

    [24] F. Filippi, S. D. Baton, H. Habara, K. A. Tanaka, S. N. Chen, C. Rousseaux, W. Nazarov, Ph. Nicolai, P. Antici, J. Fuchs, K. Morita, M. Nakatsutsumi, T. Iwawaki, M. Starodubstev. Density and temperature characterization of longscale length, near-critical density controlled plasma produced from ultra-low density plastic foam. Sci. Rep., 6, 21495(2017).

    [25] H. X. Vu, D. C. Wilson, R. J. Mason, R. G. Watt, R. A. Kopp, M. Dunne, S. R. Goldman, O. Willi. Computational study of laser imprint mitigation in foam-buffered inertial confinement fusion targets. Phys. Plasmas, 5, 211(1998).

    [26] J. Limpouch, R. Liska, M. Kuchařík, T. Kapin. Hydrodynamic simulations of laser interactions with low-density foams. Czech J. Phys., 56, B493(2006).

    [27] J. Limpouch, S. Yu. Gus’kov, V. T. Tikhonchuk, Ph. Nicolaï. Laser-supported ionization wave in under-dense gases and foams. Phys. Plasmas, 18, 103114(2011).

    [28] J. Limpouch, R. Liska, V. Tikhonchuk, J. Velechovsky. Hydrodynamic modeling of laser interaction with micro-structured targets. Plasma Phys. Controlled Fusion, 58, 095004(2016).

    [29] S. Yu. Gus’kov, G. Di Giorgio, R. De Angelis, P. Andreoli, F. Consoli, F. Ingenito, A. A. Rupasov, M. Cipriani, G. Cristofari. Laser-supported hydrothermal wave in low-dense porous substance. Laser Part. Beams, 36, 121(2018).

    [30] M. A. Belyaev, O. S. Jones, S. H. Langer, R. L. Berger, D. A. Mariscal. Laser propagation in a subcritical foam: Ion and electron heating. Phys. Plasmas, 25, 123109(2018).

    [31] Y. J. Gu, V. Tikhonchuk, O. Klimo, J. Limpouch, S. Weber. Studies of laser-plasma interaction physics with low-density targets for direct-drive inertial connement schemes. Matter Radiat. Extremes, 4, 045402(2019).

    [32] G. Zhang, W. Zheng. 2D hydrodynamic simulation of a line-focused plasma in Ni-like Ag x-ray laser research. Chin. Phys. B, 16, 2439(2007).

    [33] W. Zheng, G. Zhang. 2D simulation of an Ag planar target driven by focus-line laser. Chin. J. Comput. Phys., 25, 36(2008).

    [34] M. Kuchařík, R. Liska, J. Velechovský, J. Limpouch, L. Bednárik, P. Váchal, O. Renner. ALE method for simulations of laser-produced plasmas. Finite Vol. Complex Appl. VI, 4, 857(2011).

    [35] S. J. Davidson, C. A. Iglesias, E. Minguez, F. J. D. Serduke. WorkOp-IV summary: Lessons from iron opacities. J. Quant. Spectrosc. Radiat. Transfer, 65, 527(2000).

    [36] G. B. Zimmerman, K. H. Warren, D. A. Young, R. M. More. A new quotidian equation of state (QEOS) for hot dense matter. Phys. Fluids, 31, 3059(1988).

    [37] M. Cipriani, G. Cristofari, G. Di Giorgio, F. Consoli, A. A. Rupasov, S. Yu. Gus’kov, P. Andreoli, R. De Angelis. Absorption coefficient for nanosecond laser pulse in porous material. Plasma Phys. Controlled Fusion, 57, 125004(2015).

    [38] F. Rosmej, M. Šmìd, O. Renner, D. Khaghani. Investigation of x-ray emission induced by hot electrons in dense Cu plasmas. Phys. Scr., T161, 014020(2014).

    [39] A. D. Dahl. SIMION for the personal computer in reflection. Int. J. Mass Spectrom., 3, 2000.

    [40] V. Tassin, P.-E. Masson-Laborde, S. Depierreux, P. Loiseau, C. Goyon, V. Yahia, D. T. Michel, C. Labaune, C. Stenz. Experimental investigation of the stimulation Brillouin scatering growth and saturation at 526 and 351 nm for direct drive and shock ignition. Phys. Plasmas, 19, 012705(2012).

    [41] C. Baccou, A. Orekhov, V. Yahia, D. Teychenné, C. Labaune, G. Loisel, O. Rosmej, P.-E. Masson-Laborde, T. Rienecker, N. G. Borisenko, C. Goyon, S. Depierreux. Reduction of stimulated Brillouin backscattering with plasma beam smoothing. Phys. Plasmas, 22, 042707(2015).

    [42] P. E. Masson-Laborde, P. Loiseau, Ch. Labaune, S. Hüller, D. Pesme, H. Bandulet, S. Depierreux. Stimulated Brillouin scattering reduction induced by self-focusing for a single laser speckle interacting with an expanding plasma. Phys. Plasmas, 21, 032703(2014).

    [43] W. L. Kruer. The Physics of Laser Plasma Interactions(1988).

    [44] M. N. Rosenbluth, C. S. Liu, R. B. White. Raman and Brillouin scattering of electromagnetic waves in inhomogeneous plasma. Phys. Fluids, 17, 1211(1974).

    [45] H. A. Rose. Random phase plate hot spots and their effect on stimulated Brillouin backscatter and self-focusing. Phys. Plasmas, 2, 2216(1995).

    [46] H. A. Baldis, V. T. Tikhonchuk, C. Labaune. Modeling of a stimulated Brillouin scattering experiment with statistical distribution of speckles. Phys. Plasmas, 3, 3777(1996).

    [47] V. T. Tikhonchuk, Ph. Mounaix, D. Pesme. Stimulated Brillouin scattering reflectivity in the case of a spatially smoothed laser beam interacting with an inhomogeneous plasma. Phys. Plasmas, 4, 2658(1997).

    [48] V. T. Tikhonchuk, S. Weber, G. Riazuelo, D. Pesme, M. Grech. Coherent forward stimulated-Brillouin scattering of a spatially incoherent laser beam in a plasma and its effect on beam spray. Phys. Rev. Lett., 102, 155001(2009).

    [49] C. Hombourger. An empirical expression for K-shell ionization cross section by electron impact. J. Phys. B: At., Mol. Opt. Phys., 31, 3693(1998).

    [50] C. P. Ridgers, R. P. Drake, M. Sherlock, C. Kuranz, A. G. R. Thomas. Hybrid Vlasov–Fokker–Planck–Maxwell simulations of fast electron transport and the time dependance of K-shell excitation in a mid-Z metallic target. New J. Phys., 4, 015017(2013).

    V. T. Tikhonchuk, T. Gong, N. Jourdain, O. Renner, F. P. Condamine, K. Q. Pan, W. Nazarov, L. Hudec, J. Limpouch, R. Liska, M. Krůs, F. Wang, D. Yang, S. W. Li, Z. C. Li, Z. Y. Guan, Y. G. Liu, T. Xu, X. S. Peng, X. M. Liu, Y. L. Li, J. Li, T. M. Song, J. M. Yang, S. E. Jiang, B. H. Zhang, W. Y. Huo, G. Ren, Y. H. Chen, W. Zheng, Y. K. Ding, K. Lan, S. Weber. Studies of laser-plasma interaction physics with low-density targets for direct-drive inertial confinement fusion on the Shenguang III prototype[J]. Matter and Radiation at Extremes, 2021, 6(2): 025902
    Download Citation