• Laser & Optoelectronics Progress
  • Vol. 50, Issue 8, 80011 (2013)
Wang Yisen*, He Hao, and Wang Chingyue
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop50.080011 Cite this Article Set citation alerts
    Wang Yisen, He Hao, Wang Chingyue. Calcium Signal Modulation of Human Cells by Femtosecond Laser[J]. Laser & Optoelectronics Progress, 2013, 50(8): 80011 Copy Citation Text show less
    References

    [1] Liu Bowen, Hu Minglie, Song Youjian, et al.. Photonic crystal fiber femtosecond laser amplifier with millijoules and 100 fs level output [J]. Chinese J Lasers, 2010, 37(9): 2415-2418.

    [2] Wang Qingyue, Hu Minglie, Song Youjian, et al.. Large-mode-area photonic crystal fiber laser output high average power femtosecond pulses [J]. Chinese J. Lasers, 2007, 34(12):1603-1606.

    [3] R L Fork, B I Greene, C V Shank. Generation of optical pulses shorter than 0.1psec by colliding pulse mode locking [J]. Appl Phys Lett, 1981, 38(9): 671-672.

    [4] S Lefranois, K Kieu, Y Deng, et al.. Scaling of dissipative soliton fiber lasers to megawatt peak powers by use of large-area photonic crystal fiber [J]. Opt Lett, 2010, 35(10): 1569-1571.

    [5] Zhang Zhenxi, Yao Cuiping, Wang Jing, et al.. Development and application of the laser cell microsurgery [J]. Acta Optica Sinica, 2011, 31(9): 0900124.

    [6] Yang Haifeng, Zhou Ming, Di Jianke, et al.. Applications of femtosecond laser surgery in cell biology [J]. Laser & Optoelectronics Progress, 2009, 46(10): 71-77.

    [7] U K Tirlapur, K Knig. Targeted transfection by femtosecond laser [J]. Nature, 2002, 418(6895): 290-291.

    [8] M F Yanik, H Cinar, H N Cinar, et al.. Functional regeneration after laser axotomy [J]. Nature, 2004, 432(7019): 822.

    [9] M Stroh, W R Zipfel, R M Williams, et al.. Multiphoton microscopy guides neurotrophin modification with poly(ethylene glycol) to enhance interstitial diffusion [J]. Nature Mater, 2004, 3(7): 489-494.

    [10] S H Chung, E Mazur. Surgical applications of femtosecond lasers [J]. J Biophoton, 2009, 2(10): 557-572.

    [11] H He, K T Chan, S K Kong, et al.. All-optical human cell fusion by a fiber femtosecond laser [J]. Appl Phys Lett, 2008, 93(16): 163901.

    [12] W R Zipfel, R M Williams, W W Webb. Nonlinear magic: multiphoton microscopy in the biosciences [J]. Nature Biotechnol, 2003, 21(11): 1369-1377.

    [13] A Uchugonova, K Knig, R Bueckle, et al.. Targeted transfection of stem cells with sub-20 femtosecond laser pulses [J]. Opt Express, 2008, 16(13): 9357-9364.

    [14] M J Berridge, M D Bootman, P Lipp. Calcium- a life and death signal [J]. Nature, 1998, 395(6703): 645-648.

    [15] H Bito, K Deisseroth, R W Tsien. Ca2+-dependent regulation in neuronal gene expression [J]. Curr Opin Neurobiol, 1997, 7(3): 419-429.

    [16] S T Wong, J Athos, X A Figueroa, et al.. Calcium-stimulated adenylyl cyclase activity is critical for hippocampus-dependent long-term memory and late phase LTP [J]. Neuron, 1999, 23(4): 787-798.

    [17] J Meldolesi. Calcium signalling: oscillation, activation, expression [J]. Nature, 1998, 392(6679): 863-866.

    [18] T Tomida, K Hirose, A Takizawa, et al.. NFAT function as a working memory of Ca2+ signals in decoding Ca2+ oscillation [J]. EMBO J, 2003, 22(15): 3825-3832.

    [19] G E Hardingham, S Chawla, C M Johnson, et al.. Distinct functions of nuclear and cytoplasmic calcium in the control of gene expression [J]. Nature, 1997, 385(6613): 260-265.

    [20] R E Dolmetsch, K Xu, R S Lewis. Calcium oscillations increase the efficiency and specificity of gene expression [J]. Nature, 1998, 392(6679): 933-936.

    [21] W Li, J Llopis, M Whitney, et al.. Cell-permeant caged InsP3 ester shows that Ca2+ spike frequency can optimize gene expression [J]. Nature, 1998, 392(6679): 936-941.

    [22] M J Berridge. Inositol trisphosphate and calcium signalling [J]. Nature, 1993, 361(6410): 315-325.

    [23] M Endo. Calcium release from the sarcoplasmic reticulum [J]. Physiol Rev, 1977, 57(1): 71-108.

    [24] D E Clapham. Calcium signaling [J]. Cell, 2007, 131(6): 1047-1058.

    [25] T Hofmann, V Chubanov, T Gudermann, et al.. TRPM5 is a voltage-modulated and Ca2+-activated monovalent selective cation channel [J]. Curr Biol, 2003, 13(13): 1153-1158.

    [26] B Nilius, J Prenen, G Droogmans, et al.. Voltage dependence of the Ca2+-activated cation channel TRPM4 [J]. J Biol Chem, 2003, 278(33): 30813-30820.

    [27] D E Clapham. TRP channels as cellular sensors [J]. Nature, 2003, 426(6966): 517-524.

    [28] M Brini, D Bano, S Manni, et al.. Effects of PMCA and SERCA pump overexpression on the kinetics of cell Ca2+ signaling [J]. EMBO J, 2000, 19(18): 4926-4935.

    [29] C Olesen, M Picard, A L Winther, et al.. The structural basis of calcium transport by the calcium pump [J]. Nature, 2007, 450(7172): 1036-1042.

    [30] I F Smith, I Parker. Imaging the quantal substructure of single IP3R channel activity during Ca2+ puffs in intact mammalian cells [J]. Proc Natl Acad Sci USA, 2009, 106(15): 6404-6409.

    [31] C Hidalgo, R Bull, M I Behrens, et al.. Redox regulation of RyR-mediated Ca2+ release in muscle and neurons [J]. Biol Res, 2004, 37(4): 539-552.

    [32] S Patel, J S Marchant, E Brailoiu. Two-pore channels: regulation by NAADP and customized roles in triggering calcium signals [J]. Cell Calcium, 2010, 47(6): 480-490.

    [33] I P Hall. Second messengers, ion channels and pharmacology of airway smooth muscle [J]. Eur Respir J, 2000, 15(6): 1120-1127.

    [34] M R Logan, C A Mandato. Regulation of the actin cytoskeleton by PIP2 in cytokinesis [J]. Biol Chem, 2006, 98(6): 377-388.

    [35] T E Gunter, L Buntinas, G Sparagna, et al.. Mitochondrial calcium transport: mechanism and functions [J]. Cell Calcium, 2000, 28(5-6): 285-296.

    [36] A K Stout, H M Raphael, B I Kanterewicz, et al.. Glutamate-induced neuron death requires mitochondrial calcium uptake [J]. Nature Neurosci, 1998, 1(5): 366-373.

    [37] Y Kirichok, G Krapivinsky, D E Clapham. The mitochondrial calcium uniporter is a highly selective ion channel [J]. Nature, 2004, 427(6972): 360-364.

    [38] E Norberg, S Orrenius, B Zhivotovsky. Mitochondrial regulation of cell death: processing of apoptosis-inducing factor (AIF) [J]. Biochem Biophys Res Commun, 2010, 396(1): 95-100.

    [39] K F Ferri, G Kroemer. Organelle-specific initiation of cell death pathways [J]. Nature Cell Biol, 2001, 3(11): E255-E263.

    [40] S J Publicover, C L R Barratt. Voltage-operated Ca2+ channels and the acrosome reaction: which channels are present and what do they do [J]. Hum Reprod, 1999, 14(4): 873-879.

    [41] C D Benham, R W Tsien. A novel receptor-operated Ca2+-permeable channel activated by ATP in smooth muscle [J]. Nature, 1987, 328(6127): 275-278.

    [42] C Peinelt, M Vig, D L Koomoa, et al.. Amplification of CRAC current by STIM1 and CRACM1 (Orai 1) [J]. Nature Cell Biol, 2006, 8(7): 771-773.

    [43] R M Luik, B Wang, M Prakriya, et al.. Oligomerization of STIM1 couples ER calcium depletion to CRAC channel activation [J]. Nature, 2008, 454(7203): 538-542.

    [44] B A McNally, A Somasundaram, M Yamashita, et al.. Gated regulation of CRAC channel ion selectivity by STIM1 [J]. Nature, 2012, 482(7384): 241-245.

    [45] X Yang, H Jin, X Cai, et al.. Structural and mechanistic insights into the activation of stromal interaction molecule 1 (STIM1) [J]. Proc Natl Acad Sci USA, 2012, 109(15): 5657-5662.

    [46] X Hou, L Pedi, M M Diver, et al.. Crystal structure of the calcium release-activated calcium channel Orai [J]. Science, 2012, 338(6112): 1308-1311.

    [47] D E Clapham. A STIMulate package puts Orai calcium channels to work [J]. Cell, 2009, 136(5): 814-816.

    [48] C Y Park, P J Hoover, F M Mullins, et al.. STIM1 clusters and activates CRAC channels via direct binding of a cytosolic domain to Orai1 [J]. Cell, 2009, 136(5): 876-890.

    [49] F V Abeele, R Skryma, Y Shuba, et al.. Bcl-2-dependent modulation of Ca2+ homeostasis and store-operated channels in prostate cancer cells [J]. Cancer Cell, 2002, 1(2): 169-179.

    [50] M D Bootman, C Fearnley, I Smyrnias, et al.. An update on nuclear calcium signaling [J]. J Cell Sci, 2009, 122(14): 2337-2350.

    [51] W Echevarría, M F Leite, M T Guerra, et al.. Regulation of calcium signals in the nuclear by a nucleoplasmic reticulum [J]. Nature Cell Biol, 2003, 5(5): 440-446.

    [52] H He, K T Chan, S K Kong. Role of nuclear tubule on the apoptosis of HeLa cells induced by femtosecond laser [J]. Appl Phys Lett, 2010, 96(22): 223701.

    [53] P Marius, M T Guerra, M H Nathanson, et al.. Calcium release from ryanodine receptors in the nucleoplasmic reticulum [J]. Cell Calcium, 2006, 39(1): 65-73.

    [54] S H Yoo, S W Nam, S K Huh, et al.. Presence of a nucleoplasmic complex composed of the inositol 1,4,5-triphosphate receptor/Ca2+ channel, chromogranin B, and phospholipids [J]. Biochemistry, 2005, 44(25): 9246-9254.

    [55] J Gerasimenko, Y Maruyama, A Tepikin, et al.. Calcium signalling in and around the nuclear envelope [J]. Biochem Soc Trans, 2003, 31(1): 76-78.

    [56] G Ramazzotti, I Faenza, R Fiume, et al.. The physiology and pathology of inositide signaling in the nucleus [J]. J Cell Physiol, 2010, 226(1): 14-20.

    [57] O V Gerasimenko, J V Gerasimenko, A V Tepikin, et al.. ATP-dependent accumulation and inositol trisphosphate- or cyclic ADP-ribose-mediated release of Ca2+ from the nuclear envelope [J]. Cell, 1995, 80(3): 439-444.

    [58] J P Humbert, N Matter, J C Artault, et al.. Inositol 1,4,5-trisphophate receptor is located to the inner nuclear membrane vindicating regulation of nuclear calcium signaling by inositol 1,4,5-trisphophate. Discrete distribution of inositol phosphate receptors to inner and outer nuclear membranes [J]. J Biol Chem, 1996, 271(1): 478-485.

    [59] N Nishimura, C B Schaffer, B Friedman, et al.. Targeted insult to subsurface cortical blood vessels using ultrashort laser pulses: three models of stroke [J]. Nature Methods, 2006, 3(2): 99-108.

    [60] V Kohli, A Y Elezzabi, J P Acker. Cell nanosurgery using ultrashort (femtosecond) laser pulses: applications to membrane surgery and cell isolation [J]. Laser Surg Med, 2005, 37(3): 227-230.

    [61] N I Smith, K Fujita, T Kaneko, et al.. Generation of calcium waves in living cells by pulsed-laser-induced photodisruption [J]. Appl Phys Lett, 2001, 79(8): 1208-1210.

    [62] S Iwanaga, T Kaneko, K Fujita, et al.. Location-dependent photogeneration of calcium waves in HeLa cells [J]. Cell Biochem Biophys, 2006, 45(2): 167-176.

    [63] N I Smith, S Iwanaga, T Beppu, et al.. Photostimulation of two types of Ca2+ waves in rat pheochromocytoma PC12 cells by ultrashort pulsed near-infrared laser irradiation [J]. Laser Phys Lett, 2006, 3(3): 154-161.

    [64] S Iwanaga, N I Smith, K Fujita, et al.. Slow Ca2+ wave stimulation using low repetition rate femtosecond pulsed irradiation [J]. Opt Express, 2006, 14(2): 717-725.

    [65] H He, S K Kong, K T Chan. Identification of source of calcium in HeLa cells by femtosecond laser excitation [J]. J Biomed Opt, 2010, 15(5): 057010.

    [66] J Baumgart, W Bintig, A Ngezahayo, et al.. Fs-laser-induced Ca2+ concentration change during membrane perforation for cell transfection [J]. Opt Express, 2010, 18(3): 2219-2229.

    [67] A Fabiato. Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum [J]. Am J Physiol Cell Physiol, 1983, 245(1): C1-C14.

    [68] A Galione, A McDougall, W B Busa, et al.. Redundant mechanisms of calcium-induced calcium release underlying calcium waves during fertilization of sea urchin eggs [J]. Science, 1993, 261(5119): 348-352.

    [69] D Day, C G Cranfield, M Gu. High-speed fluorescence imaging and intensity profiling of femtosecond-induced calcium transients [J]. Int J Biomed Imaging, 2006, 2006: 93438.

    [70] H He, S Wang, X Li, et al.. Ca2+ waves across gaps in non-excitable cells induced by femtosecond laser exposeure [J]. Appl Phys Lett, 2012, 100(17): 173704.

    [71] L Avery, H R Horvitz. Pharyngeal pumping continues after laser killing of the pharyngeal nervous system of C. elegans [J]. Neuron, 1989, 3(4): 473-485.

    [72] J Wells, C Kao, E D Jansen, et al.. Application of infrared light for in vivo neural stimulation [J]. J Biomed Opt, 2005, 10(6): 064003.

    [73] D M Harris, S M Bierer, J D Wells, et al.. Optical nerve stimulation for a vestibular prosthesis [C]. SPIE, 2009, 7180: 71800R.

    [74] N M Fried, G A Lagoda, N J Scott, et al.. Laser stimulation of the cavernous nerves in the rat prostate, in vivo: optimization of wavelength, pulse energy, and pulse repetition rate [C]. 30th Annual International IEEE EMBS Conference, 2008. 2777-2780.

    [75] X Liu, X Lv, S Zeng, et al.. Noncontact and nondestructive identification of neural circuits with a femtosecond laser [J]. Appl Phys Lett, 2009, 94(6): 061113.

    [76] Y Zhao, Y Zhang, W Zhou, et al.. Characteristics of calcium signaling in astrocytes induced by photostimulation with femtosecond laser [J]. J Biomed Opt, 2010, 15(3): 035001.

    [77] Y Zhao, X Liu, W Zhou, et al.. Astrocyte-to-neuron signaling in response to photostimulation with a femtosecond laser [J]. Appl Phys Lett, 2010, 97(6): 063703.

    [78] P E Hockberger, T A Skimina, V E Centonze, et al.. Activation of flavin-containing oxidases underlies light-induced production of H2O2 in mammalian cells [J]. Proc Natl Acad Sci USA, 1999, 96(11): 6255-6260.

    [79] U K Tirlapur, K. Knig, C Peuckert, et al.. Femtosecond near-infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death [J]. Exp Cell Res, 2001, 263(1): 88-97.

    [80] J Baumgart, K Kuetemeyer, W Bintig, et al.. Repetition rate dependency of reactive oxygen species formation during femtosecond laser-based cell surgery [J]. J Biomed Opt, 2009, 14(5): 054040.

    [81] H He, K T Chan, S K Kong, et al.. Mechanism of oxidative stress generation in cells by localized near-infrared femtosecond laser excitation [J]. Appl Phys Lett, 2009, 95(23): 233702.

    [82] A V Zima, L A Blatter. Redox regulation of cardiac calcium channels and transporters [J]. Cardiovasc Res, 2006, 71(2): 310-321.

    [83] Y Yan, J Liu, C Wei, et al.. Bidirectional regulation of Ca2+ sparks by mitochondria-derived reactive oxygen species in cardiac myocytes [J]. Cardiovasc Res, 2008, 77(2): 432-441.

    [84] D M Brown, K Donaldson, P J Borm, et al.. Calcium and ROS-mediated activation of transcription factors and TNF-alpha cytokine gene expression in macrophages exposed to ultrafine particles [J]. Am J Physiol Lung Cell Mol Physiol, 2004, 286(2): L344-L353.

    [85] S Papa, V P Skulachev. Reactive oxygen species, mitochondria, apoptosis and aging [J]. Mol Cell Biochem, 1997, 174(1-2): 305-319.

    [86] H U Simon, A H Yehia, F L Schaffer. Role of reactive oxygen species (ROS) in apoptosis induction [J]. Apoptosis, 2000, 5(5): 415-418.

    [87] J E Klaunig, L M Kamendulis. The role of oxidative stress in carcinogenesis [J]. Annu Rev Pharmacol Toxicol, 2004, 44: 239-267.

    [88] T Karu. Photobiology of low-power laser effects [J]. Health Phys, 1989, 56(5): 691-704.

    Wang Yisen, He Hao, Wang Chingyue. Calcium Signal Modulation of Human Cells by Femtosecond Laser[J]. Laser & Optoelectronics Progress, 2013, 50(8): 80011
    Download Citation