• Advanced Photonics
  • Vol. 6, Issue 1, 016004 (2024)
Ling-Dong Kong1、2、†,*, Tian-Zhu Zhang1、2, Xiao-Yu Liu1、2, Hao Li1、2, Zhen Wang1、2, Xiao-Ming Xie1、2, and Li-Xing You1、2、3、*
Author Affiliations
  • 1Chinese Academy of Sciences (CAS), Shanghai Institute of Microsystem and Information Technology, National Key Laboratory of Materials for Integrated Circuits, Shanghai, China
  • 2CAS Center for Excellence in Superconducting Electronics, Shanghai, China
  • 3University of Chinese Academy of Sciences, Center of Materials Science and Optoelectronics Engineering, Beijing, China
  • show less
    DOI: 10.1117/1.AP.6.1.016004 Cite this Article Set citation alerts
    Ling-Dong Kong, Tian-Zhu Zhang, Xiao-Yu Liu, Hao Li, Zhen Wang, Xiao-Ming Xie, Li-Xing You. Large-inductance superconducting microstrip photon detector enabling 10 photon-number resolution[J]. Advanced Photonics, 2024, 6(1): 016004 Copy Citation Text show less
    References

    [1] H.-S. Zhong et al. Quantum computational advantage using photons. Science, 370, 1460-1463(2020).

    [2] L. S. Madsen et al. Quantum computational advantage with a programmable photonic processor. Nature, 606, 75-81(2022).

    [3] Y.-A. Chen et al. An integrated space-to-ground quantum communication network over 4,600 kilometres. Nature, 589, 214-219(2021).

    [4] E. Knill, R. Laflamme, G. J. Milburn. A scheme for efficient quantum computation with linear optics. Nature, 409, 46-52(2001).

    [5] J. L. O’Brien. Optical quantum computing. Science, 318, 1567-1570(2007).

    [6] S. I. Davis et al. Improved heralded single-photon source with a photon-number-resolving superconducting nanowire detector. Phys. Rev. Appl., 18, 064007(2022).

    [7] J. Hloušek et al. Accurate detection of arbitrary photon statistics. Phys. Rev. Lett., 123, 153604(2019).

    [8] E. Waks et al. Direct observation of nonclassical photon statistics in parametric down-conversion. Phys. Rev. Lett., 92, 113602(2004).

    [9] M. Eaton et al. Resolution of 100 photons and quantum generation of unbiased random numbers. Nat. Photonics, 17, 106-111(2022).

    [10] F. E. Becerra, J. Fan, A. Migdall. Photon number resolution enables quantum receiver for realistic coherent optical communications. Nat. Photonics, 9, 48-53(2015).

    [11] L. Cohen et al. Thresholded quantum LiDAR: exploiting photon-number-resolving detection. Phys. Rev. Lett., 123, 203601(2019).

    [12] M. Jönsson, G. Björk. Evaluating the performance of photon-number-resolving detectors. Phys. Rev. A, 99, 043822(2019).

    [13] R. H. Hadfield. Single-photon detectors for optical quantum information applications. Nat. Photonics, 3, 696-705(2009).

    [14] A. E. Lita et al. Development of superconducting single-photon and photon-number resolving detectors for quantum applications. J. Lightwave Technol., 40, 7578-7597(2022).

    [15] E. Waks et al. High-efficiency photon-number detection for quantum information processing. IEEE J. Sel. Top. Quantum Electron., 9, 1502-1511(2003).

    [16] E. J. Gansen et al. Photon-number-discriminating detection using a quantum-dot, optically gated, field-effect transistor. Nat. Photonics, 6, 585-588(2007).

    [17] B. E. Kardynał, Z. L. Yuan, A. J. Shields. An avalanche‐photodiode-based photon-number-resolving detector. Nat. Photonics, 2, 425-428(2008).

    [18] L. A. Jiang, E. A. Dauler, J. T. Chang. Photon-number-resolving detector with10 bits of resolution. Phys. Rev. A, 75, 062325(2007).

    [19] I. E. Zadeh et al. Superconducting nanowire single-photon detectors: a perspective on evolution, state-of-the-art, future developments, and applications. Appl. Phys. Lett., 118, 190502(2021).

    [20] P. Hu et al. Detecting single infrared photons toward optimal system detection efficiency. Opt. Express, 28, 36884-36891(2020).

    [21] D. V. Reddy et al. Superconducting nanowire single-photon detectors with 98% system detection efficiency at 1550  nm. Optica, 7, 1649-1653(2020).

    [22] J. Chang et al. Detecting telecom single photons with 99.5−2.07+0.5% system detection efficiency and high time resolution. APL Photonics, 6, 036114(2021).

    [23] A. S. Mueller et al. Free-space coupled superconducting nanowire single-photon detector with low dark counts. Optica, 8, 1586-1587(2021).

    [24] W. J. Zhang et al. Fiber-coupled superconducting nanowire single-photon detectors integrated with a bandpass filter on the fiber end-face. Supercond. Sci. Technol., 31, 035012(2018).

    [25] I. Craiciu et al. High-speed detection of 1550 nm single photons with superconducting nanowire detectors. Optica, 10, 183-190(2023).

    [26] G. V. Resta et al. Gigahertz detection rates and dynamic photon-number resolution with superconducting nanowire arrays. Nano Lett., 23, 6018-6026(2023).

    [27] B. Korzh et al. Demonstration of sub-3 ps temporal resolution with a superconducting nanowire single-photon detector. Nat. Photonics, 14, 250-255(2020).

    [28] L. You. Superconducting nanowire single-photon detectors for quantum information. Nanophotonics, 9, 2673(2020).

    [29] C. Cahall et al. Multi-photon detection using a conventional superconducting nanowire single-photon detector. Optica, 4, 1534-1535(2017).

    [30] L. Kong et al. Probabilistic energy-to-amplitude mapping in a tapered superconducting nanowire single-photon detector. Nano Lett., 22, 1587-1594(2022).

    [31] A. Divochiy et al. Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths. Nat. Photonics, 2, 302-306(2008).

    [32] S. Jahanmirinejad et al. Photon-number resolving detector based on a series array of superconducting nanowires. Appl. Phys. Lett., 101, 072602(2012).

    [33] R. Cheng et al. A 100-pixel photon-number-resolving detector unveiling photon statistics. Nat. Photonics, 17, 112-119(2022).

    [34] K. L. Nicolich et al. Universal model for the turn-on dynamics of superconducting nanowire single-photon detectors. Phys. Rev. Appl., 12, 034020(2019).

    [35] D. Zhu et al. Resolving photon numbers using a superconducting nanowire with impedance-matching taper. Nano Lett., 20, 3858-3863(2020).

    [36] I. Charaev et al. Large-area microwire MoSi single-photon detectors at 1550 nm wavelength. Appl. Phys. Lett., 116, 242603(2020).

    [37] G.-Z. Xu et al. Superconducting microstrip single-photon detector with system detection efficiency over 90% at 1550 nm. Photonics Res., 9, 958-967(2021).

    [38] D. V. Reddy et al. Broadband polarization insensitivity and high detection efficiency in high-fill-factor superconducting microwire single-photon detectors. APL Photonics, 7, 051302(2022).

    [39] C. C. Gerry et al. Proposal for a quantum random number generator using coherent light and a non-classical observable. J. Opt. Soc. Am. B, 39, 1068-1074(2022).

    [40] M. Jönsson et al. Current crowding in nanoscale superconductors within the Ginzburg-Landau model. Phys. Rev. Appl., 17, 064046(2022).

    [41] L. Assis Morais et al. Precisely determining photon-number in real time(2020).

    [42] M. Ren et al. Quantum random-number generator based on a photon-number-resolving detector. Phys. Rev. A, 83, 023820(2011).

    [43] M. Herrero-Collantes, J. C. Garcia-Escartin. Quantum random number generators. Rev. Mod. Phys., 89, 015004(2017).

    [44] C. Gabriel et al. A generator for unique quantum random numbers based on vacuum states. Nat. Photonics, 4, 711-715(2010).

    [45] B. Bai et al. 18.8 Gbps real-time quantum random number generator with a photonic integrated chip. Appl. Phys. Lett., 118, 264001(2021).

    [46] B. Lawrence et al. Special publication (NIST SP)(2010).

    [47] J. K. W. Yang et al. Modeling the electrical and thermal response of superconducting nanowire single-photon detectors. IEEE Trans. Appl. Supercond., 17, 581-585(2007).

    [48] C. L. Lv et al. Large active area superconducting single-nanowire photon detector with a 100 μm diameter. Supercond. Sci. Technol., 30, 115018(2017).

    [49] P. Zolotov et al. High-resistivity niobium nitride films for saturated-efficiency SMSPDs at telecom wavelengths and beyond. Appl. Phys. Lett., 122, 152602(2023).

    [50] P. Kok et al. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys., 79, 135-174(2007).

    [51] Y.-H. Deng et al. Gaussian Boson sampling with pseudo-photon-number-resolving detectors and quantum computational advantage. Phys. Rev. Lett., 131, 150601(2023).

    [52] J. C. F. Matthews et al. Towards practical quantum metrology with photon counting. NPJ Quantum Inf., 2, 16023(2016).

    [53] A. J. Kerman et al. Electrothermal feedback in superconducting nanowire single-photon detectors. Phys. Rev. B, 79, 100509(2009).

    [54] M. Ejrnaes et al. Time-resolved observation of fast hotspot dynamics in superconducting nanowires. Phys. Rev. B, 81, 132503(2010).

    [55] A. D. Semenov et al. Analysis of the nonequilibrium photoresponse of superconducting films to pulsed radiation by use of a two-temperature model. Phys. Rev. B, 52, 581-590(1995).

    [56] M. Sidorova et al. Phonon heat capacity and self-heating normal domains in NbTiN nanostrips. Supercond. Sci. Technol., 35, 105005(2022).

    [57] A. Dane et al. Self-heating hotspots in superconducting nanowires cooled by phonon black-body radiation. Nat. Commun., 13, 5429(2022).

    Ling-Dong Kong, Tian-Zhu Zhang, Xiao-Yu Liu, Hao Li, Zhen Wang, Xiao-Ming Xie, Li-Xing You. Large-inductance superconducting microstrip photon detector enabling 10 photon-number resolution[J]. Advanced Photonics, 2024, 6(1): 016004
    Download Citation