• Photonics Research
  • Vol. 12, Issue 10, 2115 (2024)
Yanyan Zhang1,2, Mingkun Li3, Pan Zhang3, Yueqing Du4..., Shibang Ma5, Yuanshan Liu1, Sida Xing6,* and Shougang Zhang3,7|Show fewer author(s)
Author Affiliations
  • 1School of Artificial Intelligence, Optics and Electronics, Northwestern Polytechnical University, Xi’an 710072, China
  • 2Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518063, China
  • 3National Time Service Center, Chinese Academy of Sciences, Xi’an 710600, China
  • 4School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China
  • 5Xi’an Institute of Applied Optics, Xi’an 710065, China
  • 6Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 7e-mail: sgzhang@ntsc.ac.cn
  • show less
    DOI: 10.1364/PRJ.531386 Cite this Article Set citation alerts
    Yanyan Zhang, Mingkun Li, Pan Zhang, Yueqing Du, Shibang Ma, Yuanshan Liu, Sida Xing, Shougang Zhang, "Two-octave frequency combs from an all-silica-fiber implementation," Photonics Res. 12, 2115 (2024) Copy Citation Text show less
    References

    [1] I. Coddington, N. Newbury, W. Swann. Dual-comb spectroscopy. Optica, 3, 414-426(2016).

    [2] A. S. Kowligy, H. Timmers, A. J. Lind. Infrared electric field sampled frequency comb spectroscopy. Sci. Adv., 5, eaaw8794(2019).

    [3] M. Liu, R. M. Gray, L. Costa. Mid-infrared cross-comb spectroscopy. Nat. Commun., 14, 1044(2023).

    [4] B. J. Bjork, T. Q. Bui, O. H. Heckl. Direct frequency comb measurement of OD + CO → DOCO kinetics. Science, 354, 444-448(2016).

    [5] F. R. Giorgetta, J. Peischl, D. I. Herman. Open-path dual-comb spectroscopy for multispecies trace gas detection in the 4.5–5 μm spectral region. Laser Photon. Rev., 15, 2000583(2021).

    [6] D. I. Herman, C. Weerasekara, L. C. Hutcherson. Precise multispecies agricultural gas flux determined using broadband open-path dual-comb spectroscopy. Sci. Adv., 7, eabe9765(2021).

    [7] J. L. Klocke, M. Mangold, P. Allmendinger. Single-shot sub-microsecond mid-infrared spectroscopy on protein reactions with quantum cascade laser frequency combs. Anal. Chem., 90, 10494-10500(2018).

    [8] A. S. Makowiecki, D. I. Herman, N. Hoghooghi. Mid-infrared dual frequency comb spectroscopy for combustion analysis from 2.8 to 5 μm. Proc. Combust. Inst., 38, 1627-1635(2020).

    [9] D. A. Long, M. J. Cich, C. Mathurin. Nanosecond time-resolved dual-comb absorption spectroscopy. Nat. Photonics, 18, 127-131(2023).

    [10] B. Henderson, A. Khodabakhsh, M. Metsälä. Laser spectroscopy for breath analysis: towards clinical implementation. Appl. Phys. B, 124, 161(2018).

    [11] S. D. Jackson, R. K. Jain. Fiber-based sources of coherent MIR radiation: key advances and future prospects (Invited). Opt. Express, 28, 30964-31019(2020).

    [12] M. Kowalczyk, N. Nagl, P. Steinleitner. Ultra-CEP-stable single-cycle pulses at 2.2 μm. Optica, 10, 801-811(2023).

    [13] J. Faist, G. Villares, G. Scalari. Quantum cascade laser frequency combs. Nanophotonics, 5, 272-291(2016).

    [14] S. Xing, S. Kharitonov, J. Hu. Linearly chirped mid-infrared supercontinuum in all-normal-dispersion chalcogenide photonic crystal fibers. Opt. Express, 26, 19627-19636(2018).

    [15] N. Nader, A. Kowligy, J. Chiles. Infrared frequency comb generation and spectroscopy with suspended silicon nanophotonic waveguides. Optica, 6, 1269-1276(2019).

    [16] W. P. Putnam, P. D. Keathley, J. A. Cox. Few-cycle, carrier-envelope-phase-stable laser pulses from a compact supercontinuum source. J. Opt. Soc. Am. B, 36, A93-A97(2019).

    [17] A. Roy, L. Ledezma, L. Costa. Visible-to-mid-IR tunable frequency comb in nanophotonics. Nat. Commun., 14, 6549(2023).

    [18] M. Lezius, T. Wilken, C. Deutsch. Space-borne frequency comb metrology. Optica, 3, 1381-1387(2016).

    [19] B. J. Pröbster, M. Lezius, O. Mandel. FOKUS II—space flight of a compact and vacuum compatible dual frequency comb system. J. Opt. Soc. Am. B, 38, 932-939(2021).

    [20] B. M. Walsh, N. P. Barnes. Comparison of Tm:ZBLAN and Tm: silica fiber lasers; spectroscopy and tunable pulsed laser operation around 1.9  μm. Appl. Phys. B, 78, 325-333(2004).

    [21] M. J. Digonnet. Rare-earth-doped Fiber Lasers and Amplifiers, Revised and Expanded(2001).

    [22] B. Faure, W. Blanc, B. Dussardier. Improvement of the Tm3+:3H4 level lifetime in silica optical fibers by lowering the local phonon energy. J. Non-Cryst. Solids, 353, 2767-2773(2007).

    [23] J. H. Lee, J. van Howe, C. Xu. Soliton self-frequency shift: experimental demonstrations and applications. IEEE J. Sel. Top. Quantum Electron., 14, 713-723(2008).

    [24] C. R. Petersen, U. Møller, I. Kubat. Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre. Nat. Photonics, 8, 830-834(2014).

    [25] I. T. Sorokina, V. V. Dvoyrin, N. Tolstik. Mid-ir ultrashort pulsed fiber-based lasers. IEEE J. Sel. Top. Quantum Electron., 20, 99-110(2014).

    [26] E. Baumann, E. V. Hoenig, E. F. Perez. Dual-comb spectroscopy with tailored spectral broadening in Si3N4 nanophotonics. Opt. Express, 27, 11869-11876(2019).

    [27] J. Geng, Q. Wang, S. Jiang. High-spectral-flatness mid-infrared supercontinuum generated from a Tm-doped fiber amplifier. Appl. Opt., 51, 834-840(2012).

    [28] M. Michalska, P. Grzes, J. Swiderski. 8.76 W mid-infrared supercontinuum generation in a thulium doped fiber amplifier. Opt. Fiber Technol., 43, 41-44(2018).

    [29] J. M. Dudley, S. Coen. Fundamental limits to few-cycle pulse generation from compression of supercontinuum spectra generated in photonic crystal fiber. Opt. Express, 12, 2423-2428(2004).

    [30] K. Tarnowski, T. Martynkien, P. Mergo. Coherent supercontinuum generation up to 2.2  μm in an all-normal dispersion microstructured silica fiber. Opt. Express, 24, 30523-30536(2016).

    [31] C. Yao, Z. Jia, Z. Li. High-power mid-infrared supercontinuum laser source using fluorotellurite fiber. Optica, 5, 1264-1270(2018).

    [32] H. Guo, W. Weng, J. Liu. Nanophotonic supercontinuum-based mid-infrared dual-comb spectroscopy. Optica, 7, 1181-1188(2020).

    [33] S. Xing, D. M. B. Lesko, T. Umeki. Single-cycle all-fiber frequency comb. APL Photon., 6, 086110(2021).

    [34] L. F. Mollenauer, R. H. Stolen, J. P. Gordon. Experimental observation of picosecond pulse narrowing and solitons in optical fibers. Phys. Rev. Lett., 45, 1095-1098(1980).

    [35] V. P. Kalosha, J. Herrmann. Self-phase modulation and compression of few-optical-cycle pulses. Phys. Rev. A, 62, 011804(2000).

    [36] P. Zhang, Y.-Y. Zhang, M.-K. Li. All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks. Chin. Phys. B, 31, 054210(2022).

    [37] T. P. Butler, D. Gerz, C. Hofer. Watt-scale 50-MHz source of single-cycle waveform-stable pulses in the molecular fingerprint region. Opt. Lett., 44, 1730-1733(2019).

    [38] S. Xing, A. S. Kowligy, D. M. B. Lesko. All-fiber frequency comb at 2 μm providing 1.4-cycle pulses. Opt. Lett., 45, 2660-2663(2020).

    [39] J. W. Fleming. Dispersion in GeO2–SiO2 glasses. Appl. Opt., 23, 4486-4493(1984).

    [40] J. W. Fleming, D. L. Wood. Refractive index dispersion and related properties in fluorine doped silica. Appl. Opt., 22, 3102-3104(1983).

    [41] A. B. Fallahkhair, K. S. Li, T. E. Murphy. Vector finite difference modesolver for anisotropic dielectric waveguides. J. Lightwave Technol., 26, 1423-1431(2008).

    [42] Y. Yamamoto, Y. Tamura, T. Hasegawa. Silica-based highly nonlinear fibers and their applications. SEI Tech. Rev., 83, 15-20(2016).

    [43] J. M. Dudley, G. Genty, S. Coen. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys., 78, 1135-1184(2006).

    [44] A. M. Heidt, A. Hartung, G. W. Bosman. Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers. Opt. Express, 19, 3775-3787(2011).

    [45] K. C. Cossel, E. M. Waxman, I. A. Finneran. Gas-phase broadband spectroscopy using active sources: progress, status, and applications [Invited]. J. Opt. Soc. Am. B, 34, 104-129(2017).

    [46] T. Brabec, F. Krausz. Nonlinear optical pulse propagation in the single-cycle regime. Phys. Rev. Lett., 78, 3282-3285(1997).

    [47] N. Karasawa, S. Nakamura, N. Nakagawa. Comparison between theory and experiment of nonlinear propagation for a-few-cycle and ultrabroadband optical pulses in a fused-silica fiber. IEEE J. Quantum Electron., 37, 398-404(2001).

    [48] S. Xing, S. Kharitonov, T. North. Generation of high-brightness spectrally flat supercontinuum in 1900–2450 nm range inside a small core thulium-doped fiber amplifier. Advanced Solid State Lasers(2017).

    [49] K. J. Blow, D. Wood. Theoretical description of transient stimulated Raman scattering in optical fibers. IEEE J. Quantum Electron., 25, 2665-2673(1989).

    [50] D. M. B. Lesko, H. Timmers, S. Xing. A six-octave optical frequency comb from a scalable few-cycle erbium fiber laser. Nat. Photonics, 15, 281-286(2020).

    [51] K. L. Corwin, N. R. Newbury, J. M. Dudley. Fundamental noise limitations to supercontinuum generation in microstructure fiber. Phys. Rev. Lett., 90, 113904(2003).

    [52] R. Paschotta, A. Schlatter, S. C. Zeller. Optical phase noise and carrier-envelope offset noise of mode-locked lasers. Appl. Phys. B, 82, 265-273(2006).

    [53] J. Li, Z. Xue, F. Shen. High-resolution oxygen-corrected laser heterodyne radiometer (LHR) for stratospheric and tropospheric wind field detection. Opt. Express, 31, 7850-7862(2023).

    Yanyan Zhang, Mingkun Li, Pan Zhang, Yueqing Du, Shibang Ma, Yuanshan Liu, Sida Xing, Shougang Zhang, "Two-octave frequency combs from an all-silica-fiber implementation," Photonics Res. 12, 2115 (2024)
    Download Citation