• Photonics Research
  • Vol. 12, Issue 10, 2115 (2024)
Yanyan Zhang1,2, Mingkun Li3, Pan Zhang3, Yueqing Du4..., Shibang Ma5, Yuanshan Liu1, Sida Xing6,* and Shougang Zhang3,7|Show fewer author(s)
Author Affiliations
  • 1School of Artificial Intelligence, Optics and Electronics, Northwestern Polytechnical University, Xi’an 710072, China
  • 2Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518063, China
  • 3National Time Service Center, Chinese Academy of Sciences, Xi’an 710600, China
  • 4School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China
  • 5Xi’an Institute of Applied Optics, Xi’an 710065, China
  • 6Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 7e-mail: sgzhang@ntsc.ac.cn
  • show less
    DOI: 10.1364/PRJ.531386 Cite this Article Set citation alerts
    Yanyan Zhang, Mingkun Li, Pan Zhang, Yueqing Du, Shibang Ma, Yuanshan Liu, Sida Xing, Shougang Zhang, "Two-octave frequency combs from an all-silica-fiber implementation," Photonics Res. 12, 2115 (2024) Copy Citation Text show less

    Abstract

    Mid-infrared frequency-comb spectroscopy enables measurement of molecules at megahertz spectral resolution, sub-hertz frequency accuracy, and microsecond acquisition speed. However, the widespread adoption of this technique has been hindered by the complexity and alignment sensitivity of mid-infrared frequency-comb sources. Leveraging the underexplored mid-infrared window of silica fibers presents a promising approach to address these challenges. In this study, we present the first, to the best of our knowledge, experimental demonstration and quantitative numerical description of mid-infrared frequency-comb generation in silica fibers. Our all-silica-fiber frequency comb spans over two octaves (0.8 μm to 3.4 μm) with a power output of 100 mW in the mid-infrared region. The amplified quantum noise is suppressed using four-cycle (25 fs) driving pulses, with the carrier-envelope offset frequency exhibiting a signal-to-noise ratio of 40 dB and a free-running bandwidth of 90 kHz. Our developed model provides quantitative guidelines for mid-infrared frequency-comb generation in silica fibers, enabling all-fiber frequency-comb spectroscopy in diverse fields such as organic synthesis, pharmacokinetics processes, and environmental monitoring.
    γ(ω0)=ω0n2cAeff,

    View in Article

    Az+α2Ak2Nik+1k!βkkATk=iγ(1+iτshockT)(A(z,t)R(T)|A(z,TT)|2dT).

    View in Article

    k2Nβkk!(ωω0)k=β(ω)β(ω0)β1(ω0)(ωω0).

    View in Article

    Yanyan Zhang, Mingkun Li, Pan Zhang, Yueqing Du, Shibang Ma, Yuanshan Liu, Sida Xing, Shougang Zhang, "Two-octave frequency combs from an all-silica-fiber implementation," Photonics Res. 12, 2115 (2024)
    Download Citation