• Photonics Research
  • Vol. 9, Issue 11, 2253 (2021)
Chen Wei1, Wencong Wang1, Dongmei Liu1、2、*, Min Gu1、3、*, and Xianqiu Wu1
Author Affiliations
  • 1School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
  • 2e-mail: dmliu@scnu.edu.cn
  • 3e-mail: mingu@m.scnu.edu.cn
  • show less
    DOI: 10.1364/PRJ.439806 Cite this Article Set citation alerts
    Chen Wei, Wencong Wang, Dongmei Liu, Min Gu, Xianqiu Wu. High-efficiency and large light-receiving area superconducting nanowire single-photon detector integrated with high-contrast grating[J]. Photonics Research, 2021, 9(11): 2253 Copy Citation Text show less
    References

    [1] G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, R. Sobolewski. Picosecond superconducting single-photon optical detector. Appl. Phys. Lett., 79, 705-707(2001).

    [2] C. M. Natarajan, M. G. Tanner, R. H. Hadfield. Superconducting nanowire single-photon detectors: physics and applications. Supercond. Sci. Technol., 25, 063001(2012).

    [3] I. Holzman, Y. Ivry. Superconducting nanowires for single-photon detection: progress, challenges, and opportunities. Adv. Quantum Technol., 2, 1800058(2019).

    [4] D. Li, R. Jiao. Design of a low-filling-factor and polarization-sensitive superconducting nanowire single photon detector with high detection efficiency. Photon. Res., 7, 847-852(2019).

    [5] P. Hu, Y. Ma, H. Li, Z. Liu, H. Yu, J. Quan, Y. Xiao, L. You, Y. Liu, J. Liang, Z. Wang. Superconducting single-photon detector with a system efficiency of 93% operated in a 2.4 K space-application-compatible cryocooler. Supercond. Sci. Technol., 34, 07LT01(2021).

    [6] D. V. Reddy, R. R. Nerem, S. W. Nam, R. P. Mirin, V. B. Verma. Superconducting nanowire single-photon detectors with 98% system detection efficiency at 1550 nm. Optica, 7, 1649-1653(2020).

    [7] H. Li, Y. Wang, L. You, H. Wang, H. Zhou, P. Hu, W. Zhang, X. Liu, X. Yang, L. Zhang, Z. Wang, X. Xie. Supercontinuum single-photon detector using multilayer superconducting nanowires. Photon. Res., 7, 1425-1431(2019).

    [8] H. Shibata, K. Shimizu, H. Takesue, Y. Tokura. Ultimate low system dark-count rate for superconducting nanowire single-photon detector. Opt. Lett., 40, 3428-3431(2015).

    [9] A. Vetter, S. Ferrari, P. Rath, R. Alaee, O. Kahl, V. Kovalyuk, S. Diewald, G. N. Goltsman, A. Korneev, C. Rockstuhl, W. H. P. Pernice. Cavity-enhanced and ultrafast superconducting single-photon detectors. Nano Lett., 16, 7085-7092(2016).

    [10] B. Korzh, Q. Zhao, J. P. Allmaras, S. Frasca, T. M. Autry, E. A. Bersin, A. D. Beyer, R. M. Briggs, B. Bumble, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, A. E. Lita, F. Marsili, G. Moody, C. Peña, E. Ramirez, J. D. Rezac, N. Sinclair, M. J. Stevens, A. E. Velasco, V. B. Verma, E. E. Wollman, S. Xie, D. Zhu, P. D. Hale, M. Spiropulu, K. L. Silverman, R. P. Mirin, S. W. Nam, A. G. Kozorezov, M. D. Shaw, K. K. Berggren. Demonstration of sub-3 ps temporal resolution with a superconducting nanowire single-photon detector. Nat. Photonics, 14, 250-255(2020).

    [11] K. Takemoto, Y. Nambu, T. Miyazawa, Y. Sakuma, T. Yamamoto, S. Yorozu, Y. Arakawa. Quantum key distribution over 120  km using ultrahigh purity single-photon source and superconducting single-photon detectors. Sci. Rep., 5, 14383(2015).

    [12] H. Li, L. Zhang, L. You, X. Yang, W. Zhang, X. Liu, S. Chen, Z. Wang, X. Xie. Large-sensitive-area superconducting nanowire single-photon detector at 850  nm with high detection efficiency. Opt. Express, 23, 17301-17308(2015).

    [13] L. Xue, M. Li, L. Zhang, D. Zhai, Z. Li, L. Kang, Y. Li, H. Fu, M. Ming, S. Zhang, X. Tao, Y. Xiong, P. Wu. Long-range laser ranging using superconducting nanowire single-photon detectors. Chin. Opt. Lett., 14, 071201(2016).

    [14] M. E. Grein, A. J. Kerman, E. A. Dauler, O. Shatrovoy, R. J. Molnar, D. Rosenberg, J. Yoon, C. E. DeVoe, D. V. Murphy, B. S. Robinson, D. M. Boroson. Design of a ground-based optical receiver for the lunar laser communications demonstration. International Conference on Space Optical Systems and Applications (ICSOS), 78-82(2011).

    [15] H. Ivanov, E. Leitgeb, P. Pezzei, G. Freiberger. Experimental characterization of SNSPD receiver technology for deep space FSO under laboratory testbed conditions. Optik, 195, 163101(2019).

    [16] X. Li, J. Tan, K. Zheng, L. Zhang, L. Zhang, W. He, P. Huang, H. Li, B. Zhang, Q. Chen, R. Ge, S. Guo, T. Huang, X. Jia, Q. Zhao, X. Tu, L. Kang, J. Chen, P. Wu. Enhanced photon communication through Bayesian estimation with an SNSPD array. Photon. Res., 8, 637-641(2020).

    [17] S. Chen, D. Liu, W. Zhang, L. You, Y. He, W. Zhang, X. Yang, G. Wu, M. Ren, H. Zeng, Z. Wang, X. Xie, M. Jiang. Time-of-flight laser ranging and imaging at 1550  nm using low-jitter superconducting nanowire single-photon detection system. Appl. Opt., 52, 3241-3245(2013).

    [18] S. Steinhauer, S. Gyger, V. Zwiller. Progress on large-scale superconducting nanowire single-photon detectors. Appl. Phys. Lett., 118, 100501(2021).

    [19] H. Hemmati, A. Biswas, I. B. Djordjevic. Deep-space optical communications: future perspectives and applications. Proc. IEEE, 99, 2020-2039(2011).

    [20] C. Yu, J. Qiu, H. Xia, X. Dou, J. Zhang, J. Pan. Compact and lightweight 1.5  μm lidar with a multi-mode fiber coupling free-running InGaAs/InP single-photon detector. Rev. Sci. Instrum., 89, 103106(2018).

    [21] C. L. Lv, H. Zhou, H. Li, L. X. You, X. Y. Liu, Y. Wang, W. J. Zhang, S. J. Chen, Z. Wang, X. M. Xie. Large active area superconducting single-nanowire photon detector with a 100  μm diameter. Supercond. Sci. Technol., 30, 115018(2017).

    [22] Q. Chen, B. Zhang, L. Zhang, R. Ge, R. Xu, Y. Wu, X. Tu, X. Jia, D. Pan, L. Kang, J. Chen, P. Wu. Sixteen-pixel NbN nanowire single photon detector coupled with 300-μm fiber. IEEE Photon. J., 12, 6800112(2020).

    [23] J. P. Allmaras, A. D. Beyer, R. M. Briggs, F. Marsili, M. D. Shaw, G. V. Resta, J. A. Stern, V. B. Verma, R. P. Mirin, S. W. Nam, W. H. Farr. Large-area 64-pixel array of WSi superconducting nanowire single photon detectors. Conference on Lasers and Electro-Optics (CLEO), 1-2(2017).

    [24] M. Yabuno, S. Miyajima, S. Miki, H. Terai. Scalable implementation of a superconducting nanowire single-photon detector array with a superconducting digital signal processor. Opt. Express, 28, 12047-12057(2020).

    [25] C. J. Chang-Hasnain, W. Yang. High-contrast gratings for integrated optoelectronics. Adv. Opt. Photon., 4, 379-440(2012).

    [26] D. Fattal, J. Li, Z. Peng, M. Fiorentino, R. G. Beausoleil. Flat dielectric grating reflectors with focusing abilities. Nat. Photonics, 4, 466-470(2010).

    [27] F. Lu, F. G. Sedgwick, V. Karagodsky, C. Chase, C. J. Chang-Hasnain. Planar high-numerical-aperture low-loss focusing reflectors and lenses using subwavelength high contrast gratings. Opt. Express, 18, 12606-12614(2010).

    [28] W. Fang, Y. Huang, J. Fei, X. Duan, K. Liu, X. Ren. Concentric circular focusing reflector realized using high index contrast gratings. Opt. Commun., 402, 572-576(2017).

    [29] T. Shiono, M. Kitagawa, K. Setsune, T. Mitsuyu. Reflection micro-Fresnel lenses and their use in an integrated focus sensor. Appl. Opt., 28, 3434-3442(1989).

    [30] L. Redaelli, G. Bulgarini, S. Dobrovolskiy, S. N. Dorenbos, V. Zwiller, E. Monroy, J. M. Gérard. Design of broadband high-efficiency superconducting-nanowire single photon detectors. Supercond. Sci. Technol., 29, 065016(2016).

    [31] C. Ma, Y. Huang, X. Ren. High-numerical-aperture high-reflectivity focusing reflectors using concentric circular high-contrast gratings. Appl. Opt., 54, 973-978(2015).

    [32] L. Zhang, C. Wan, M. Gu, R. Xu, S. Zhang, L. Kang, J. Chen, P. Wu. Dual-lens beam compression for optical coupling in superconducting nanowire single-photon detectors. Sci. Bull., 60, 1434-1438(2015).

    [33] M. Gu, L. Kang, L. Zhang, Q. Zhao, T. Jia, C. Wan, R. Xu, X. Yang, P. Wu. A high-efficiency broadband superconducting nanowire single-photon detector with a composite optical structure. Chin. Phys. Lett., 32, 038501(2015).

    [34] S. Wang, F. Chen, Y. Zhang, Q. Li, X. Sun, X. Chen, W. Lu. Simulation of superconducting single photon detector coupled with metal-insulator-metal circular grating. 13th International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD), 131-132(2013).

    [35] S. Miki, T. Yamashita, M. Fujiwara, M. Sasaki, Z. Wang. Multichannel SNSPD system with high detection efficiency at telecommunication wavelength. Opt. Lett., 35, 2133-2135(2010).

    [36] L. You, J. Quan, Y. Wang, Y. Ma, X. Yang, Y. Liu, H. Li, J. Li, J. Wang, J. Liang, Z. Wang, X. Xie. Superconducting nanowire single photon detection system for space applications. Opt. Express, 26, 2965-2971(2018).

    [37] J. Yu, R. Zhang, Y. Gao, Z. Sheng, M. Gu, Q. Sun, J. Liao, T. Wu, Z. Lin, P. Wu, L. Kang, H. Li, L. Zhang, W. Zheng. Intravital confocal fluorescence lifetime imaging microscopy in the second near-infrared window. Opt. Lett., 45, 3305-3308(2020).

    [38] Y. Xu, A. Kuzmin, E. Knehr, M. Blaicher, K. Ilin, P.-I. Dietrich, W. Freude, M. Siegel, C. Koos. Superconducting nanowire single-photon detector with 3D-printed free-form microlenses. Opt. Express, 29, 27708-27731(2021).

    Chen Wei, Wencong Wang, Dongmei Liu, Min Gu, Xianqiu Wu. High-efficiency and large light-receiving area superconducting nanowire single-photon detector integrated with high-contrast grating[J]. Photonics Research, 2021, 9(11): 2253
    Download Citation