• Advanced Photonics
  • Vol. 4, Issue 2, 026003 (2022)
Zhaojun Wang1, Tianyu Zhao1, Huiwen Hao2, Yanan Cai3, Kun Feng1, Xue Yun1, Yansheng Liang1, Shaowei Wang1, Yujie Sun2, Piero R. Bianco4, Kwangsung Oh5, and Ming Lei1、*
Author Affiliations
  • 1Xi’an Jiaotong University, School of Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, Xi’an, China
  • 2Peking University, School of Life Sciences, State Key Laboratory of Membrane Biology & Biomedical Pioneer Innovation Center (BIOPIC), Beijing, China
  • 3Northwest A&F University, College of Science, Yangling, China
  • 4University of Nebraska Medical Center, College of Pharmacy, Department of Pharmaceutical Sciences, Omaha, Nebraska, United States
  • 5University of Nebraska Omaha, College of Information Science & Technology, Department of Computer Science, Omaha, Nebraska, United States
  • show less
    DOI: 10.1117/1.AP.4.2.026003 Cite this Article Set citation alerts
    Zhaojun Wang, Tianyu Zhao, Huiwen Hao, Yanan Cai, Kun Feng, Xue Yun, Yansheng Liang, Shaowei Wang, Yujie Sun, Piero R. Bianco, Kwangsung Oh, Ming Lei. High-speed image reconstruction for optically sectioned, super-resolution structured illumination microscopy[J]. Advanced Photonics, 2022, 4(2): 026003 Copy Citation Text show less
    References

    [1] M. G. Gustafsson. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc., 198, 82-87(2000).

    [2] M. G. Gustafsson et al. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys. J., 94, 4957-4970(2008).

    [3] P. Kner et al. Super-resolution video microscopy of live cells by structured illumination. Nat. Methods, 6, 339-342(2009).

    [4] L. Shao et al. Super-resolution 3D microscopy of live whole cells using structured illumination. Nat. Methods, 8, 1044-1046(2011).

    [5] B. C. Chen et al. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science, 346, 1257998(2014).

    [6] D. Li et al. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science, 349, aab3500(2015).

    [7] X. Huang et al. Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy. Nat. Biotechnol., 36, 451-459(2018).

    [8] Y. Guo et al. Visualizing intracellular organelle and cytoskeletal interactions at nanoscale resolution on millisecond timescales. Cell, 175, 1430-1442(2018).

    [9] F. Macias-Garza et al. The missing cone problem and low-pass distortion in optical serial sectioning microscopy. ICASSP-88., Int. Conf. Acoust. Speech, and Signal Process., 890-893(1988).

    [10] C. Sheppard et al. Three-dimensional transfer functions for high-aperture systems. J. Opt. Soc. Am. A, 11, 593-598(1994).

    [11] R. Turcotte et al. Dynamic super-resolution structured illumination imaging in the living brain. Proc. Natl. Acad. Sci. U. S. A., 116, 9586-9591(2019).

    [12] L. Shao et al. I5S: wide-field light microscopy with 100-nm-scale resolution in three dimensions. Biophys. J., 94, 4971-4983(2008).

    [13] K. Wicker et al. Phase optimisation for structured illumination microscopy. Opt. Express, 21, 2032-2049(2013).

    [14] K. O’Holleran, M. Shaw. Optimized approaches for optical sectioning and resolution enhancement in 2D structured illumination microscopy. Biomed. Opt. Express, 5, 2580-2590(2014).

    [15] B. Thomas, M. Momany, P. Kner. Optical sectioning structured illumination microscopy with enhanced sensitivity. J. Opt., 15, 094004(2013).

    [16] A. Descloux et al. High-speed multiplane structured illumination microscopy of living cells using an image-splitting prism. Nanophotonics, 9, 143-148(2019).

    [17] M. Müller et al. Open-source image reconstruction of super-resolution structured illumination microscopy data in ImageJ. Nat. Commun., 7, 10980(2016).

    [18] A. Markwirth et al. Video-rate multi-color structured illumination microscopy with simultaneous real-time reconstruction. Nat. Commun., 10, 4315(2019).

    [19] S. Tu et al. Fast reconstruction algorithm for structured illumination microscopy. Opt. Lett., 45, 1567-1570(2020).

    [20] W. Lukosz. Ein Verfahren zur optischen Abbildung mit einem über die klassische Auflösungsgrenze hinausgehenden Auflösungsvermögen. Zeitschr. Naturforsch. A, 18, 436-438(1963).

    [21] P. T. So, H.-S. Kwon, C. Y. Dong. Resolution enhancement in standing-wave total internal reflection microscopy: a point-spread-function engineering approach. J. Opt. Soc. Am. A, 18, 2833-2845(2001).

    [22] M. G. Somekh, K. Hsu, M. C. Pitter. Resolution in structured illumination microscopy: a probabilistic approach. J. Opt. Soc. Am. A, 25, 1319-1329(2008).

    [23] D. Dan et al. Rapid image reconstruction of structured illumination microscopy directly in the spatial domain. IEEE Photonics J., 13, 3900411(2021).

    [24] R. Heintzmann, C. G. Cremer. Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating. Proc. SPIE, 3568, 185-196(1999).

    [25] A. Lal, C. Shan, P. Xi. Structured illumination microscopy image reconstruction algorithm. IEEE J. Sel. Top. Quantum Electron., 22, 50-63(2016).

    [26] P. Křížek et al. SIMToolbox: a MATLAB toolbox for structured illumination fluorescence microscopy. Bioinformatics, 32, 318-320(2016).

    [27] X. Zhou et al. Image recombination transform algorithm for superresolution structured illumination microscopy. J. Biomed. Opt., 21, 096009(2016).

    [28] T. Zhao et al. Multi-color structured illumination microscopy for live cell imaging based on the enhanced image recombination transform algorithm. Biomed. Opt. Express, 12, 3474-3484(2021).

    [29] K. Wicker. Non-iterative determination of pattern phase in structured illumination microscopy using auto-correlations in Fourier space. Opt. Express, 21, 24692-24701(2013).

    [30] L. Dematté, D. Prandi. GPU computing for systems biology. Brief. Bioinform., 11, 323-333(2010).

    [31] B. M. Hanser et al. Phase retrieval for high-numerical-aperture optical systems. Opt. Lett., 28, 801-803(2003).

    [32] N. Nakamura, J.-H. Wei, J. Seemann. Modular organization of the mammalian Golgi apparatus. Curr. Opin. Cell Biol., 24, 467-474(2012).

    [33] Y. Rong et al. The Golgi microtubules regulate single cell durotaxis. EMBO Rep., 22, e51094(2021).

    [34] H. Hao et al. Golgi-associated microtubules are fast cargo tracks and required for persistent cell migration. EMBO Rep., 21, e48385(2020).

    [35] Š. Bálint et al. Correlative live-cell and superresolution microscopy reveals cargo transport dynamics at microtubule intersections. Proc. Natl. Acad. Sci. U. S. A., 110, 3375-3380(2013).

    [36] T. Stephan et al. MICOS assembly controls mitochondrial inner membrane remodeling and crista junction redistribution to mediate cristae formation. EMBO J., 39, e104105(2020).

    [37] G. Arismendi-Morillo. Electron microscopy morphology of the mitochondrial network in gliomas and their vascular microenvironment. Biochim. Biophys. Acta (BBA)-Bioenergetics, 1807, 602-608(2011).

    [38] M. I. Jan et al. Interplay of mitochondria apoptosis regulatory factors and microRNAs in valvular heart disease. Arch. Biochem. Biophys., 633, 50-57(2017).

    [39] V. Costa et al. Mitochondrial fission and cristae disruption increase the response of cell models of Huntington's disease to apoptotic stimuli. EMBO Mol. Med., 2, 490-503(2010).

    [40] M. Protasoni, M. Zeviani. Mitochondrial structure and bioenergetics in normal and disease conditions. Int. J. Mol. Sci., 22, 586(2021).

    [41] T. Stephan et al. Live-cell STED nanoscopy of mitochondrial cristae. Sci. Rep., 9, 12419(2019).

    [42] S.-H. Shim et al. Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes. Proc. Natl. Acad. Sci. U. S. A., 109, 13978-13983(2012).

    [43] J. Qin et al. ER-mitochondria contacts promote mtDNA nucleoids active transportation via mitochondrial dynamic tubulation. Nat. Commun., 11, 4471(2020).

    [44] F. Orieux et al. Bayesian estimation for optimized structured illumination microscopy. IEEE Trans. Image Process., 21, 601-614(2012).

    [45] S. Dong et al. Resolution doubling with a reduced number of image acquisitions. Biomed. Opt. Express, 6, 2946-2952(2015).

    [46] F. Ströhl, C. F. Kaminski. Speed limits of structured illumination microscopy. Opt. Lett., 42, 2511-2514(2017).

    [47] A. Lal et al. A frequency domain SIM reconstruction algorithm using reduced number of images. IEEE Trans. Image Process., 27, 4555-4570(2018).

    [48] D. Fixler, Z. Zalesky. Comment on ‘Rapid Image Reconstruction of Structured Illumination Microscopy Directly in the Spatial Domain’ and more about point spread function shaping for enhanced imaging resolution. IEEE Photonics J., 13, 9600204(2021).

    [49] M. Somekh. Comments on ‘Rapid Image Reconstruction of Structured Illumination Microscopy Directly in the Spatial Domain’. IEEE Photonics J., 13, 9600102(2021).

    [50] G. Wen et al. High-fidelity structured illumination microscopy by point-spread-function engineering. Light Sci. Appl., 10, 70(2021).

    [51] S. Santos et al. Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle. J. Biomed. Opt., 14, 030502(2009).

    [52] Z. Yang et al. Cyclooctatetraene-conjugated cyanine mitochondrial probes minimize phototoxicity in fluorescence and nanoscopic imaging. Chem. Sci., 11, 8506-8516(2020).

    Zhaojun Wang, Tianyu Zhao, Huiwen Hao, Yanan Cai, Kun Feng, Xue Yun, Yansheng Liang, Shaowei Wang, Yujie Sun, Piero R. Bianco, Kwangsung Oh, Ming Lei. High-speed image reconstruction for optically sectioned, super-resolution structured illumination microscopy[J]. Advanced Photonics, 2022, 4(2): 026003
    Download Citation