• Journal of Inorganic Materials
  • Vol. 35, Issue 1, 93 (2020)
Ya-Nan MA1, Yu-Fei LIU1, Chen-Xu YU1, Chuan-Kun ZHANG1, Shi-Jun LUO1、*, and Yi-Hua GAO2、3、*
Author Affiliations
  • 1School of Science, Hubei University of Automotive Technology, Shiyan 442002, China
  • 2School of Physics, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
  • 3Center for Nanoscale Characterization & Devices (CNCD), Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan 430074, China
  • show less
    DOI: 10.15541/jim20190088 Cite this Article
    Ya-Nan MA, Yu-Fei LIU, Chen-Xu YU, Chuan-Kun ZHANG, Shi-Jun LUO, Yi-Hua GAO. Monolayer Ti3C2Tx Nanosheets with Different Lateral Dimension: Preparation and Electrochemical Property[J]. Journal of Inorganic Materials, 2020, 35(1): 93 Copy Citation Text show less
    References

    [1] S NOVOSELOV K, K GEIM A, V MOROZOV S et al. Electric field effect in atomically thin carbon films. Science, 306, 666-669(2004).

    [2] L TAN C, H CAO X, J WU X et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev., 117, 6225-6331(2017).

    [3] Z BUTLER S, M HOLLEN S, Y CAO L et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano, 7, 2898-2926(2013).

    [4] K GEIM A, S NOVOSELOV K. The rise of graphene. Nat. Mater., 6, 183-191(2007).

    [5] M NAGUIB, N MOCHALIN V, W BARSOUM M et al. 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv. Mater., 26, 992-1005(2014).

    [6] Q ZHAO M, E REN C, Z LING et al. Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Adv. Mater., 27, 339-345(2015).

    [7] M BOOTA, B ANASORI, C VOIGT et al. Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene). Adv. Mater., 28, 1517-1522(2016).

    [8] M NAGUIB, J HALIM, J LU et al. New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. J. Am. Chem. Soc., 135, 15966-15969(2013).

    [9] X WANG, S KAJIYAMA, H IINUMA et al. Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors. Nat. Commun., 6, 6544(2015).

    [10] B ANASORI, R LUKATSKAYA M, Y GOGOTSI. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater., 2, 16098(2017).

    [11] F ZENG Y, X XIN G, W ZHANG B et al. One-step preparation and electrochemical performance of 3D reduced graphene oxide/ NiO as supercapacitor electrodes materials. J. Inorg. Mater., 33, 1070-1076(2018).

    [12] H SHI. Activated carbons and double layer capacitance. Electrochim. Acta, 41, 1633-1639(1996).

    [13] D QU, H SHI. Studies of activated carbons used in double-layer capacitors. J. Power Sources, 74, 99-107(1998).

    [14] V SUBRAMANIAN, H ZHU, R VAJTAI et al. Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. J. Phy. Chem. B, 109, 20207-20214(2005).

    [15] M BRYAN A, M SANTINO L, Y LU et al. Conducting polymers for pseudocapacitive energy storage. Chem. Mater., 28, 5989-5998(2016).

    [16] Y XIA, S MATHIS T, Q ZHAO M et al. Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes. Nature, 557, 409(2018).

    [17] R LUKATSKAYA M, S KOTA, Z LIN et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy, 2, 17105(2017).

    [18] M NAGUIB, M KURTOGLU, V PRESSER et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater., 23, 4248-4253(2011).

    [19] M GHIDIU, R LUKATSKAYA M, Q ZHAO M et al. Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance. Nature, 516, 7529(2014).

    [20] P URBANKOWSKI, B ANASORI, T MAKARYAN et al. Synthesis of two-dimensional titanium nitride Ti4N3(MXene). Nanoscale, 8, 11385-11391(2016).

    [21] C XU, B WANG L, B LIU Z et al. Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat. Mater., 14, 1135(2015).

    [22] A HOPE M, C FORSE A, J GRIFFITH K et al. NMR reveals the surface functionalisation of Ti3C2 MXene. Phys. Chem. Chem. Phys., 18, 5099-5102(2016).

    [23] P SRIVASTAVA, A MISHRA, H MIZUSEKI et al. Mechanistic insight into the chemical exfoliation and functionalization of Ti3C2 MXene. ACS Appl. Mater. Interfaces, 8, 24256-24264(2016).

    [24] Y PENG Y, B AKUZUM, N KURRA et al. All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage. Energy Environ. Sci., 9, 2847-2854(2016).

    [25] H GHASSEMI, W HARLOW, O MASHTALIR et al. In situ environmental transmission electron microscopy study of oxidation of two-dimensional Ti3C2 and formation of carbon-supported TiO2. J. Mater. Chem. A, 2, 14339-14343(2014).

    [26] D STOLLER M, S PARK, Y ZHU et al. Graphene-based ultracapacitors. Nano Lett., 8, 3498-3502(2008).

    [27] S WANG, N LIU, J TAO et al. Inkjet printing of conductive patterns and supercapacitors using a multi-walled carbon nanotube/Ag nanoparticle based ink. J. Mater. Chem. A, 3, 2407-2413(2015).

    [28] H WANG, Z LU, D QIAN et al. Single-crystal α-MnO2 nanorods: synthesis and electrochemical properties. Nanotechnology, 18, 115616(2007).

    Ya-Nan MA, Yu-Fei LIU, Chen-Xu YU, Chuan-Kun ZHANG, Shi-Jun LUO, Yi-Hua GAO. Monolayer Ti3C2Tx Nanosheets with Different Lateral Dimension: Preparation and Electrochemical Property[J]. Journal of Inorganic Materials, 2020, 35(1): 93
    Download Citation