• Chinese Optics Letters
  • Vol. 22, Issue 9, 091202 (2024)
Feixia Huang1, Bowen Gu2, Qiang Wu1,3,**, Hong Yang1..., Yingying Hu1, Juan Liu1, Yue Fu1, Xing-Dao He1, Haimeng Wu3, Jing Jiang3, Ghanim Putrus3, Zabih Ghassemlooy3, Jinhui Yuan4 and Bin Liu1,*|Show fewer author(s)
Author Affiliations
  • 1Key Laboratory of Nondestructive Test (Ministry of Education), Nanchang Hangkong University, Nanchang 330063, China
  • 2School of Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
  • 3Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
  • 4State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • show less
    DOI: 10.3788/COL202422.091202 Cite this Article Set citation alerts
    Feixia Huang, Bowen Gu, Qiang Wu, Hong Yang, Yingying Hu, Juan Liu, Yue Fu, Xing-Dao He, Haimeng Wu, Jing Jiang, Ghanim Putrus, Zabih Ghassemlooy, Jinhui Yuan, Bin Liu, "Real-time monitoring of internal temperature of a lithium-ion battery using embedded fiber Bragg gratings," Chin. Opt. Lett. 22, 091202 (2024) Copy Citation Text show less
    References

    [1] S. Leuthner. Lithium-ion battery overview. Lithium-Ion Batteries: Basics and Applications, 13(2018).

    [2] S. Srdic, S. Lukic. Toward extreme fast charging: challenges and opportunities in directly connecting to medium-voltage line. IEEE Electrific. Mag., 7, 22(2019).

    [3] X. G. Yang, S. Ge, N. Wu et al. All-climate battery technology for electric vehicles: inching closer to the mainstream adoption of automated driving. IEEE Electrific. Mag., 7, 12(2019).

    [4] Y. Ji, Y. Zhang, C. Y. Wang. Li-ion cell operation at low temperatures. J. Electrochem. Soc., 160, A636(2013).

    [5] A. A. Pesaran, S. Santhanagopalan, G. H. Kim. Addressing the impact of temperature extremes on large format Li-ion batteries for vehicle applications, 11(2013).

    [6] H. C. A. Shiao, D. Chua, H. Lin et al. Low temperature electrolytes for Li-ion PVDF cells. J. Power Sources, 87, 167(2000).

    [7] S. S. Zhang, K. Xu, T. R. Jow. Low temperature performance of graphite electrode in Li-ion cells. Electrochim. Acta, 48, 241(2002).

    [8] P. Ramadass, B. Haran, R. White et al. Capacity fade of Sony 18650 cells cycled at elevated temperatures: Part I. Cycling performance. J. Power Sources, 112, 606(2002).

    [9] Y. Zhang, C. Y. Wang, X. Tang. Cycling degradation of an automotive LiFePO4 lithium-ion battery. J. Power Sources, 196, 1513(2011).

    [10] Q. Wang, P. Ping, X. Zhao et al. Thermal runaway caused fire and explosion of lithium-ion battery. J. Power Sources, 208, 210(2012).

    [11] M. Astaneh, J. Andric, L. Löfdahl et al. Multiphysics simulation optimization framework for lithium-ion battery pack design for electric vehicle applications. Energy, 239, 122092(2022).

    [12] X. Feng, M. Ouyang, X. Liu et al. Thermal runaway mechanism of battery for electric vehicles: a review. Energy Storage Mater., 10, 246(2018).

    [13] S. S. Zhang, K. Xu, T. R. Jow. Charge and discharge characteristics of a commercial LiCoO2-based 18650 Li-ion battery. J. Power Sources, 160, 1403(2006).

    [14] M. Nascimento, M. S. Ferreira, J. L. Pinto. Real time thermal monitoring of lithium batteries with fiber sensors and thermocouples: a comparative study. Measurement, 111, 260(2017).

    [15] A. Fortier, M. Tsao, N. D. Williard et al. Preliminary study on integration of fiber optical Bragg grating sensors in lithium-ion batteries and in situ strain and temperature monitoring of battery cells. Energies, 10, 838(2017).

    [16] E. Gümüşsu, Ö. Ekici, M. Köksal. 3-D CFD modeling and experimental testing of thermal behavior of a Li-ion battery. Appl. Thermal Eng., 120, 484(2017).

    [17] L. Song, Y. Zheng, Z. Xiao et al. Review on thermal runaway of lithium-ion batteries for electric vehicles. J. Electron. Mater., 51, 30(2022).

    [18] X. Feng, D. Ren, X. He et al. Mitigating thermal runaway of lithium-ion batteries. Joule, 4, 743(2020).

    [19] S. Ma, M. Jiang, P. Tao et al. Temperature effect and thermal impact in lithium-ion batteries: a review. Prog. Nat. Sci. Mater. Int., 28, 653(2018).

    [20] X. Feng, S. Zheng, D. Ren et al. Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database. Appl. Energy, 246, 53(2019).

    [21] Z. Wei, J. Hu, H. He et al. Embedded distributed temperature sensing enabled multistate joint observation of smart lithium-ion battery. IEEE Trans. Indus. Electron., 70, 555(2022).

    [22] M. F. H. Rain, Z. M. Razlan, A. B. Shahriman et al. Comparative study of surface temperature of lithium-ion polymer cells at different discharging rates by infrared thermography and thermocouple. Int. J. Heat. Mass Transfer, 153, 119595(2020).

    [23] H. Gao, M. K. Matters-Kammerer, P. Harpe et al. A 71GHz RF energy harvesting tag with 8% efficiency for wireless temperature sensors in 65 nm CMOS. IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 403(2013).

    [24] K. O. Hill, Y. Fujii, D. C. Johnson et al. Photosensitivity in optical fiber waveguides: application to reflection filter fabrication. Appl. Phys. Lett., 32, 647(1978).

    [25] B. S. Kawasaki, K. O. Hill, D. C. Johnson et al. Narrow-band Bragg reflectors in optical fibers. Opt. Lett., 3, 66(1978).

    [26] J. Peng, S. Jia, H. Yu et al. Design and experiment of FBG sensors for temperature monitoring on external electrode of lithium-ion batteries. IEEE Sensors J., 21, 4628(2020).

    [27] E. McTurk, T. Amietszajew, J. Fleming et al. Thermo-electrochemical instrumentation of cylindrical Li-ion cells. J. Power Sources, 379, 309(2018).

    [28] S. Novais, M. Nascimento, L. Grande et al. Internal and external temperature monitoring of a Li-ion battery with fiber Bragg grating sensors. Sensors, 16, 1394(2016).

    [29] W. Hao, C. Shan-Shan, S. Jun-Hao et al. Temperature field monitoring of lithium battery pack based on double-clad fiber Bragg grating sensor. Acta Phys. Sin., 71, 104207(2022).

    [30] J. Huang, L. Albero Blanquer, J. Bonefacino et al. Operando decoding of chemical and thermal events in commercial Na (Li)-ion cells via optical sensors. Nat. Energy, 5, 674(2020).

    [31] Z. Li, Y. Xiao, F. Liu et al. Operando optical fiber monitoring of nanoscale and fast temperature changes during photo-electrocatalytic reactions. Light Sci. Appl., 11, 220(2022).

    [32] R. Wang, H. Zhang, Q. Liu et al. Operando monitoring of ion activities in aqueous batteries with plasmonic fiber-optic sensors. Nat. Commun., 13, 547(2022).

    [33] G. Yang, C. Leitão, Y. Li et al. Real-time temperature measurement with fiber Bragg sensors in lithium batteries for safety usage. Measurement, 46, 3166(2013).

    [34] M. S. Whal, L. Spitthoff, H. I. Muri et al. The importance of optical fibres for internal temperature sensing in lithium-ion batteries during operation. Energies, 14, 3617(2021).

    [35] A. Raghavan, P. Kiesel, L. W. Sommer et al. Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 1: cell embedding method and performance. J. Power Sources, 341, 466(2017).

    [36] A. Ganguli, B. Saha, A. Raghavan et al. Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 2: internal cell signals and utility for state estimation. J. Power Sources, 341, 474(2017).

    [37] C. Forgez, D. V. Do, G. Friendrich et al. Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery. J. Power Sources, 195, 2961(2010).

    [38] Y. Li, W. Wang, X. G. Yang et al. A smart Li-ion battery with self-sensing capabilities for enhanced life and safety. J. Power Sources, 546, 231705(2022).

    [39] Y. Liu, Z. Liu, W. Mei et al. Operando monitoring lithium-ion battery temperature via implanting femtosecond-laser-inscribed optical fiber sensors. Measurement, 203, 11961(2022).

    [40] E. McTurk, T. Amietszajew, J. Fleming et al. Thermo-electrochemical instrumentation of cylindrical Li-ion cells. J. Power Sources, 379, 309(2018).

    [41] J. Fleming, T. Amietszajew, E. McTurk et al. Development and evaluation of in-situ instrumentation for cylindrical Li-ion cells using fiber optic sensors. Hardware X, 3, 100(2018).

    [42] K. Hill, B. Malo, F. Bilodeau et al. Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask. Appl. Phys. Lett., 62, 1035(1993).

    [43] .

    [44] R. Benger, H. Wenzl, H. P. Beck et al. Electrochemical and thermal modeling of lithium-ion cells for use in HEV or EV application. World Electr. Veh. J., 3, 342(2009).

    [45] D. H. Jeon, S. H. Baek. Thermal modeling of cylindrical lithium-ion battery during discharge cycle. Energy Convers. Manag., 52, 2973(2011).

    [46] N. H. F. Ismail, S. F. Toha, N. A. M. Azubir et al. Simplified heat generation model for lithium-ion battery used in electric vehicle. IOP Conference Series: Materials Science and Engineering(2013).

    [47] A. Ahmadou Samba, N. Omar, H. Gualous et al. Development of 2D thermal battery model for lithium-ion pouch cells. World Electr. Veh. J., 6, 629(2013).

    [48] D. I. Stroe, M. Swierczynski, S. K. Kaer et al. Degradation behavior of lithium-ion batteries during calendar ageing-the case of the internal resistance increase. IEEE Trans. Indus. Appl., 54, 517(2017).

    [49] C. J. Bae, A. Manandhar, P. Kiesel et al. Monitoring the strain evolution of lithium-ion battery electrodes using an optical fiber Bragg grating sensor. Energy Technol., 4, 851(2016).

    Feixia Huang, Bowen Gu, Qiang Wu, Hong Yang, Yingying Hu, Juan Liu, Yue Fu, Xing-Dao He, Haimeng Wu, Jing Jiang, Ghanim Putrus, Zabih Ghassemlooy, Jinhui Yuan, Bin Liu, "Real-time monitoring of internal temperature of a lithium-ion battery using embedded fiber Bragg gratings," Chin. Opt. Lett. 22, 091202 (2024)
    Download Citation