• Photonics Research
  • Vol. 11, Issue 10, 1733 (2023)
Yuqi Zhang1, Qiang Luo1, Dahuai Zheng1,3, Shuolin Wang2..., Shiguo Liu1, Hongde Liu1,*, Fang Bo1,4, Yongfa Kong1,5 and Jingjun Xu1,6|Show fewer author(s)
Author Affiliations
  • 1MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin 300457, China
  • 2School of Science, Jiangsu University of Science and Technology, Zhenjiang 212100, China
  • 3e-mail: dhzheng@nankai.edu.cn
  • 4e-mail: bofang@nankai.edu.cn
  • 5e-mail: kongyf@nankai.edu.cn
  • 6e-mail: jjxu@nankai.edu.cn
  • show less
    DOI: 10.1364/PRJ.497947 Cite this Article Set citation alerts
    Yuqi Zhang, Qiang Luo, Dahuai Zheng, Shuolin Wang, Shiguo Liu, Hongde Liu, Fang Bo, Yongfa Kong, Jingjun Xu, "Highly efficient on-chip erbium–ytterbium co-doped lithium niobate waveguide amplifiers," Photonics Res. 11, 1733 (2023) Copy Citation Text show less
    References

    [1] J. Riemensberger, N. Kuznetsov, J. Liu, J. He, R. N. Wang, T. J. Kippenberg. A photonic integrated continuous-travelling-wave parametric amplifier. Nature, 612, 56-61(2022).

    [2] J. D. B. Bradley, M. Pollnau. Erbium-doped integrated waveguide amplifiers and lasers. Laser Photonics Rev., 5, 368-403(2011).

    [3] M. Kösters, B. Sturman, P. Werheit, D. Haertle, K. Buse. Optical cleaning of congruent lithium niobate crystals. Nat. Photonics, 3, 510-513(2009).

    [4] S. Wang, Y. Shan, D. Zheng, S. Liu, F. Bo, H. Liu, Y. Kong, J. Xu. The real-time dynamic holographic display of LN:Bi,Mg crystals and defect-related electron mobility. Opto-Electron. Adv., 5, 210135(2022).

    [5] J. Zhao, C. Ma, M. Rüsing, S. Mookherjea. High quality entangled photon pair generation in periodically poled thin-film lithium niobate waveguides. Phys. Rev. Lett., 124, 163603(2020).

    [6] Y. Kong, F. Bo, W. Wang, D. Zheng, H. Liu, G. Zhang, R. Rupp, J. Xu. Recent progress in lithium niobate: optical damage, defect simulation, and on-chip devices. Adv. Mater., 32, 1806452(2020).

    [7] D. Zhu, L. Shao, M. Yu, R. Cheng, B. Desiatov, C. J. Xin, Y. Hu, J. Holzgrafe, S. Ghosh, A. Shams-Ansari, E. Puma, N. Sinclair, C. Reimer, M. Zhang, M. Lončar. Integrated photonics on thin-film lithium niobate. Adv. Opt. Photonics, 13, 242-352(2021).

    [8] A. Boes, L. Chang, C. Langrock, M. Yu, M. Zhang, Q. Lin, M. Lončar, M. Fejer, J. Bowers, A. Mitchell. Lithium niobate photonics: unlocking the electromagnetic spectrum. Science, 379, eabj4396(2023).

    [9] L. Chang, S. Liu, J. E. Bowers. Integrated optical frequency comb technologies. Nat. Photonics, 16, 95-108(2022).

    [10] C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, M. Lončar. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 562, 101-104(2018).

    [11] M. Zhang, C. Wang, P. Kharel, D. Zhu, M. Lončar. Integrated lithium niobate electro-optic modulators: when performance meets scalability. Optica, 8, 652-667(2021).

    [12] S. Yuan, Y. Wu, Z. Dang, C. Zeng, X. Qi, G. Guo, X. Ren, J. Xia. Strongly enhanced second harmonic generation in a thin film lithium niobate heterostructure cavity. Phys. Rev. Lett., 127, 153901(2021).

    [13] M. Asgari, E. Riccardi, O. Balci, D. De Fazio, S. M. Shinde, J. Zhang, S. Mignuzzi, F. H. L. Koppens, A. C. Ferrari, L. Viti, M. S. Vitiello. Chip-scalable, room-temperature, zero-bias, graphene-based terahertz detectors with nanosecond response time. ACS Nano, 15, 17966-17976(2021).

    [14] X. Sun, Y. Sheng, X. Gao, Y. Liu, F. Ren, Y. Tan, Z. Yang, Y. Jia, F. Chen. Self-powered lithium niobate thin-film photodetectors. Small, 18, 2203532(2022).

    [15] J. Zhou, Y. Liang, Z. Liu, W. Chu, H. Zhang, D. Yin, Z. Fang, R. Wu, J. Zhang, W. Chen, Z. Wang, Y. Zhou, M. Wang, Y. Cheng. On-chip integrated waveguide amplifiers on erbium-doped thin-film lithium niobate on insulator. Laser Photonics Rev., 15, 2100030(2021).

    [16] Z. Chen, Q. Xu, K. Zhang, W.-H. Wong, D.-L. Zhang, E. Y.-B. Pun, C. Wang. Efficient erbium-doped thin-film lithium niobate waveguide amplifiers. Opt. Lett., 46, 1161-1164(2021).

    [17] Q. Luo, C. Yang, Z. Hao, R. Zhang, D. Zheng, F. Bo, Y. Kong, G. Zhang, J. Xu. On-chip erbium-doped lithium niobate waveguide amplifiers. Chin. Opt. Lett., 19, 060008(2021).

    [18] M. Cai, K. Wu, J. Xiang, Z. Xiao, T. Li, C. Li, J. Chen. Erbium-doped lithium niobate thin film waveguide amplifier with 16 dB internal net gain. IEEE J. Sel. Top. Quantum Electron., 28, 8200608(2022).

    [19] X. Yan, Y. Liu, J. Wu, Y. Chen, X. Chen. Integrated spiral waveguide amplifiers on erbium-doped thin-film lithium niobate. arXiv(2021).

    [20] Q. Luo, Z. Hao, C. Yang, R. Zhang, D. Zheng, S. Liu, H. Liu, F. Bo, Y. Kong, G. Zhang, J. Xu. Microdisk lasers on an erbium-doped lithium-niobite chip. Sci. China Phys. Mech. Astron., 64, 234263(2021).

    [21] Z. Wang, Z. Fang, Z. Liu, W. Chu, Y. Zhou, J. Zhang, R. Wu, M. Wang, T. Lu, Y. Cheng. On-chip tunable microdisk laser fabricated on Er3+-doped lithium niobate on insulator. Opt. Lett., 46, 380-383(2021).

    [22] Y. Liu, X. Yan, J. Wu, B. Zhu, Y. Chen, X. Chen. On-chip erbium-doped lithium niobate microcavity laser. Sci. China Phys. Mech. Astron., 64, 234262(2021).

    [23] R. Gao, J. Guan, N. Yao, L. Deng, J. Lin, M. Wang, L. Qiao, Z. Wang, Y. Liang, Y. Zhou, Y. Cheng. On-chip ultra-narrow-linewidth single-mode microlaser on lithium niobate on insulator. Opt. Lett., 46, 3131-3134(2021).

    [24] Q. Luo, C. Yang, R. Zhang, Z. Hao, D. Zheng, H. Liu, X. Yu, F. Gao, F. Bo, Y. Kong, G. Zhang, J. Xu. On-chip erbium-doped lithium niobate microring lasers. Opt. Lett., 46, 3275-3278(2021).

    [25] R. Zhang, C. Yang, Z. Hao, D. Jia, Q. Luo, D. Zheng, H. Liu, X. Yu, F. Gao, F. Bo, Y. Kong, G. Zhang, J. Xu. Integrated lithium niobate single-mode lasers by the Vernier effect. Sci. China Phys. Mech. Astron., 64, 294216(2021).

    [26] T. Li, K. Wu, M. Cai, Z. Xiao, H. Zhang, C. Li, J. Xiang, Y. Huang, J. Chen. A single-frequency single-resonator laser on erbium-doped lithium niobate on insulator. APL Photonics, 6, 101301(2021).

    [27] S. Taccheo, G. Della Valle, K. Ennser, G. Sorbello, S. Jiang. Transient insensitive all-fibre gain-clamped EDFA based on highly-doped Er:Yb-fibre. Electron. Lett., 42, 594-595(2006).

    [28] E. Cantelar, J. Sanz-García, F. Cussó. Growth of LiNbO3 co-doped with Er3+/Yb3+. J. Crystal Growth, 205, 196-201(1999).

    [29] E. Cantelar, J. A. Muñoz, J. A. Sanz-García, F. Cusso. Yb3+ to Er3+ energy transfer in LiNbO3. J. Phys. Condens. Mater., 10, 8893-8903(1998).

    [30] C. Strohhöfer, A. Polman. Absorption and emission spectroscopy in Er3+-Yb3+ doped aluminum oxide waveguides. Opt. Mater., 21, 705-712(2003).

    [31] C. Zou, F. Shu, F. Sun, Z. Gong, Z. Han, G. Guo. Theory of free space coupling to high-Q whispering gallery modes. Opt. Express, 21, 9982-9995(2013).

    [32] J. Tisler, R. Reuter, A. Lämmle, F. Jelezko, G. Balasubramanian, P. R. Hemmer, F. Reinhard, J. Wrachtrup. Highly efficient FRET from a single nitrogen-vacancy center in nanodiamonds to a single organic molecule. ACS Nano, 5, 7893-7898(2011).

    Yuqi Zhang, Qiang Luo, Dahuai Zheng, Shuolin Wang, Shiguo Liu, Hongde Liu, Fang Bo, Yongfa Kong, Jingjun Xu, "Highly efficient on-chip erbium–ytterbium co-doped lithium niobate waveguide amplifiers," Photonics Res. 11, 1733 (2023)
    Download Citation