• Journal of Innovative Optical Health Sciences
  • Vol. 14, Issue 6, 2150015 (2021)
Om Prakash Singh1、*, Ismail M. El-Badawy2, and M. B. Malarvili3
Author Affiliations
  • 1Bio-signal Processing Research Group (BSPRG) School of Biosciences and Medical Engineering Universiti Teknologi Malaysia (UTM) 81310 Skudai, Johor, Malaysia
  • 2Electronics and Communication Engineering Department Arab Academy for Science and Technology, Cairo, Egypt School of Electrical Engineering Universiti Teknologi Malaysia (UTM) 81310 Skudai, Johor, Malaysia
  • 3Bio-Signal Processing Research Group (BSPRG) School of Biosciences and Medical Engineering Universiti Teknologi Malaysia (UTM) 81310 Skudai, Johor, Malaysia
  • show less
    DOI: 10.1142/s1793545821500152 Cite this Article
    Om Prakash Singh, Ismail M. El-Badawy, M. B. Malarvili. Design and validation of a handheld capnography device for cardiopulmonary assessment based on the Arduino platform[J]. Journal of Innovative Optical Health Sciences, 2021, 14(6): 2150015 Copy Citation Text show less
    References

    [1] A. B. Sanders, K. B. Kern, C. W. Otto, M. M. Milander, G. A. Ewy, "End-tidal carbon dioxide monitoring during cardiopulmonary resuscitation: A prognostic indicator for survival," JAMA 262(10), 1347–1351 (1989).

    [2] K. Z. Lukic, B. Urch, M. Fila, M. E. Faughnan, F. Silverman, "A novel application of capnography during controlled human exposure to air pollution," Biomed. Eng. Online 5(1), 54 (2006).

    [3] P. A. Meaney, B. J. Bobrow, M. E. Mancini, J. Christenson, A. R. De Caen, F. Bhanji, B. S. Abella, M. E. Kleinman, D. P. Edelson, R. A. Berg et al., "Cardiopulmonary resuscitation quality: Improving cardiac resuscitation outcomes both inside and outside the hospital: A consensus statement from the American heart association," Circulation 128(4), 417–435 (2013).

    [4] S. Silvestri, G. A. Ralls, B. Krauss, J. Thundiyil, S. G. Rothrock, A. Senn, E. Carter, J. Falk, "The effectiveness of out-of-hospital use of continuous end-tidal carbon dioxide monitoring on the rate of unrecognized misplaced intubation within a regional emergency medical services system," Ann. Emerg. Med. 45(5), 497–503 (2005).

    [5] O. K. Kurt, S. Alpar, T. Sipit, S. F. Guven, H. Erturk, M. K. Demirel, M. Korkmaz, M. Hayran, B. Kurt, "The diagnostic role of capnography in pulmonary embolism," Amer. J. Emerg. Med. 28(4), 460–465 (2010).

    [6] K. Deitch, J. Miner, C. R. Chudnofsky, P. Dominici, D. Latta, "Does end tidal CO2 monitoring during emergency department procedural sedation and analgesia with propofol decrease the incidence of hypoxic events? a randomized, controlled trial," Ann. Emerg. Med. 55(3), 258–264 (2010).

    [7] C. A. Manifold, N. Davids, L. C. Villers, D. A. Wampler, "Capnography for the nonintubated patient in the emergency setting," J. Emerg. Med. 45(4), 626–632 (2013).

    [8] J. M. Langlands, W. M. Wallace, "Small bloodsamples from ear-lobe puncture a substitute for arterial puncture," Lancet 286(7407), 315–317 (1965).

    [9] M. D. Davis, B. K. Walsh, S. E. Sittig, R. D. Restrepo, "AARC clinical practice guideline: Blood gas analysis and hemoximetry: 2013," Respir. Care 58(10), 1694–1703 (2013).

    [10] A. Ak, C. O. Ogun, A. Bayir, S. A. Kayis, R. Koylu, "Prediction of arterial blood gas values from venous blood gas values in patients with acute exacerbation of chronic obstructive pulmonary disease," Tohoku J. Exper. Med. 210(4), 285–290 (2006).

    [11] D. Flenley, "Arterial puncture," Br. Med. J. 281 (6233), 128 (1980).

    [12] P. Tosiri, N. Kanitsap, A. Kanitsap, "Approximate iatrogenic blood loss in medical intensive care patients and the causes of anemia," J. Med. Assoc. Thai 93(suppl 7), S271–S276 (2010).

    [13] S. E. Huttmann, W. Windisch, J. H. Storre, "Techniques for the measurement and monitoring of carbon dioxide in the blood," Ann. Am. Thorac. Soc. 11(4), 645–652 (2014).

    [14] S. Sudip, Capnography equipment market - global industry analysis, size, share, growth, trends and forecast 2014–2020, http://transparencymarketresearch. com, accessed 20 September 2017.

    [15] A. Y. Kumar, K. Bhavani-Shankar, H. S. Moseley, Y. Delph, "Inspiratory valve malfunction in a circle system: Pitfalls in capnography," Can. J. Anaesth. 39(9), 997 (1992).

    [16] G. Schmalisch, "Current methodological and technical limitations of time and volumetric capnography in newborns," Biomed. Eng. Online 15(1), 1–13 (2016).

    [17] D. Santoso, F. D. Setiaji, "Design and implementation of capnograph for laparoscopic surgery," Int. J. Inf. Electron. Eng. 3(5), 523 (2013).

    [18] C. Bautista, B. Patel, M. Shah, L. Connie, B. Seifer, G. Facas, Portable capnography, http:// portablecapnography.weebly.com/uploads/8/0/5/ 5/8055239/nebec portable capnography.pdf, accessed 5 October 2017.

    [19] S. Z. Binti Zaharudin, M. Kazemi, M. Malarvili, Designing a respiratory CO2 measurement device for home monitoring of asthma severity, 2014 IEEE Conf. Biomedical Engineering and Sciences (IECBES), IEEE, pp. 230–234 (2014).

    [20] S. A. Malik, O. P. Singh, A. Nurifhan, M. Malarvili, Portable respiratory CO2 monitoring device for early screening of asthma, Proc. ACEC, Rome, Italy, pp. 90–94 (2016).

    [21] K. Kuhn, E. Pignanelli, A. Schutze, "Versatile gas detection system based on combined NDIR transmission and photoacoustic absorption measurements," IEEE Sensors J. 13(3), 934–940 (2012).

    [22] J. Yang, K. An, B. Wang, L. Wang, "New mainstream double-end carbon dioxide capnograph for human respiration," J. Biomed. Opt. 15(6), 065007 (2010).

    [23] M. Kirkko-Jaakkola, J. Collin, J. Takala, "Bias prediction for MEMES gyroscopes," IEEE Sensors J. 12(6), 2157–2163 (2012).

    [24] G. R. Arce, Nonlinear Signal Processing: A Statistical Approach, John Wiley & Sons (2005).

    [25] Q. Zhang, X. Zeng, W. Hu, D. Zhou, "A machine learning-empowered system for long-term motiontolerant wearable monitoring of blood pressure and heart rate with ear-ecg/ppg," IEEE Access 5, 10547–10561 (2017).

    [26] L. A. Critchley, J. A. Critchley, "A meta-analysis of studies using bias and precision statistics to compare cardiac output measurement techniques," J. Clin. Monitor. Comput. 15(2), 85–91 (1999).

    [27] O. P. Singh, T. A. Howe, M. Malarvili, "Real-time human respiration carbon dioxide measurement device for cardiorespiratory assessment," J. Breath Res. 12(2), 026003 (2018).

    [28] M. Richardson, K. Moulton, D. Rabb, S. Kindopp, T. Pishe, C. Yan, I. Akpinar, B. Tsoi, A. Chuck, Capnography for monitoring end-tidal CO2 in hospital and pre-hospital settings: A health technology assessment, CADTH Health Technology Assessment, 142 (2016).

    Om Prakash Singh, Ismail M. El-Badawy, M. B. Malarvili. Design and validation of a handheld capnography device for cardiopulmonary assessment based on the Arduino platform[J]. Journal of Innovative Optical Health Sciences, 2021, 14(6): 2150015
    Download Citation