• Opto-Electronic Engineering
  • Vol. 48, Issue 11, 210270 (2021)
Wu Meiyu, Wang Jing*, and Li Bincheng
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.12086/oee.2021.210270 Cite this Article
    Wu Meiyu, Wang Jing, Li Bincheng. Polarized cavity ring-down technique for characterization of single-layer SiO2 films[J]. Opto-Electronic Engineering, 2021, 48(11): 210270 Copy Citation Text show less
    References

    [3] Dahmani F, Schmid A W, Lambropoulos J C, et al. Dependence of birefringence and residual stress near laser-induced cracks in fused silica on laser fluence and on laser-pulse number[J]. Appl Opt, 1998, 37(33): 7772–7784.

    [6] Stout J H, Shores D A, Goedjen J G, et al. Stresses and cracking of oxide scales[J]. Mater Sci Eng A, 1989, 120–121: 193–197.

    [7] Sethuraman V A, Chon M J, Shimshak M, et al. In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation[J]. J Power Sources, 2010, 195(15): 5062–5066.

    [9] Xiao S L, Li B C, Cui H, et al. Sensitive measurement of stress birefringence of fused silica substrates with cavity ring-down technique[J]. Opt Lett, 2018, 43(4): 843–846.

    [10] Huang H F, Lehmann K K. Effects of linear birefringence and polarization-dependent loss of supermirrors in cavity ring-down spectroscopy[J]. Appl Opt, 2008, 47(21): 3817–3827.

    [11] Dupré P. Birefringence-induced frequency beating in high-finesse cavities by continuous-wave cavity ring-down spectroscopy[J]. Phys Rev A, 2015, 92(5): 053817.

    [12] Fleisher A J, Long D A, Liu Q N, et al. Precision interferometric measurements of mirror birefringence in high-finesse optical resonators[J]. Phys Rev A, 2016, 93(1): 013833.

    [13] Visschers J C, Tretiak O, Budker D, et al. continuous-wave cavity ring-down polarimetry[J]. J Chem Phys, 2020, 152(16): 164202.

    [14] Atanassova E, Dimitrova T, Koprinarova J. AES and XPS study of thin RF-sputtered Ta2O5 layers[J]. Appl Surf Sci, 1995, 84(2): 193–202.

    [15] Neaton J B, Muller D A, Ashcroft N W. Electronic properties of the Si/SiO2 interface from first principles[J]. Phys Rev Lett, 2000, 85(6): 1298–1301.

    [16] Tomozeiu N. SiOx thin films deposited by r.f. magnetron reactive sputtering: structural properties designed by deposition conditions[J]. J Optoelectron Adv Mater, 2006, 8(2): 769–775.

    [18] Zheng M J, Zhang L D, Liu F M. Preparation and optical properties of SiO2 thin films containing InP nanocrystals[J]. Mater Res Bull, 2000, 35(14–15): 2469–2477.

    [19] Shintani A, Sugaki S, Nakashima H. Temperature dependence of stresses in chemical vapor deposited vitreous films[J]. J Appl Phys, 1980, 51(8): 4197–4205.

    [20] Revesz A G, Hughes H L. The structural aspects of non-crystalline SiO2 films on silicon: a review[J]. J Non Cryst Solids, 2003, 328(1–3): 48–63.

    [22] Kupfer H, Flügel T, Richter F, et al. Intrinsic stress in dielectric thin films for micromechanical components[J]. Surf Coat Technol, 1999, 116–119: 116–120.

    [23] Choi J K, Lee J, Yoo J B, et al. Residual stress analysis of SiO2 films deposited by plasma-enhanced chemical vapor deposition[J]. Surf Coat Technol, 2000, 131(1–3): 153–157.

    [25] Wang B L, Oakberg T C. A new instrument for measuring both the magnitude and angle of low level linear birefringence[J]. Rev Sci Instrum, 1999, 70(10): 3847–3854.

    [26] Fang M, Hu D F, Shao J D. Evolution of stress in evaporated silicon dioxide thin films[J]. Chin Opt Lett, 2010, 8(1): 119–122.

    [28] Amra C, Roche P, Pelletier E. Interface roughness cross-correlation laws deduced from scattering diagram measurements on optical multilayers: effect of the material grain size[J]. J Opt Soc Am B, 1987, 4(7): 1087–1093.

    Wu Meiyu, Wang Jing, Li Bincheng. Polarized cavity ring-down technique for characterization of single-layer SiO2 films[J]. Opto-Electronic Engineering, 2021, 48(11): 210270
    Download Citation