• Acta Optica Sinica
  • Vol. 40, Issue 2, 0228001 (2020)
Hong Huang*, Lihua Wang, and Guangyao Shi
Author Affiliations
  • Key Laboratory of Optoelectronic Technique System of the Ministry of Education, Chongqing University, Chongqing 400044, China
  • show less
    DOI: 10.3788/AOS202040.0228001 Cite this Article Set citation alerts
    Hong Huang, Lihua Wang, Guangyao Shi. Spatially-Regularized Manifold Discriminant Analysis Algorithm for Hyperspectral Image Classification[J]. Acta Optica Sinica, 2020, 40(2): 0228001 Copy Citation Text show less
    Flow chart of SSRMDA algorithm
    Fig. 1. Flow chart of SSRMDA algorithm
    ERS segmentation and ground-truth images. (a) ERS segmentation image; (b) ground-truth image
    Fig. 2. ERS segmentation and ground-truth images. (a) ERS segmentation image; (b) ground-truth image
    Hyperspectral images in Indian Pines dataset. (a) False-color image; (b) ground-truth image
    Fig. 3. Hyperspectral images in Indian Pines dataset. (a) False-color image; (b) ground-truth image
    Hyperspectral images in Washington DC Mall dataset. (a) False-color image; (b) ground-truth image
    Fig. 4. Hyperspectral images in Washington DC Mall dataset. (a) False-color image; (b) ground-truth image
    Overall classification accuracy of SSRMDA algorithm with different values of K and Kb on different datasets. (a) Indian Pines dataset; (b) Washington DC Mall dataset
    Fig. 5. Overall classification accuracy of SSRMDA algorithm with different values of K and Kb on different datasets. (a) Indian Pines dataset; (b) Washington DC Mall dataset
    Overall classification accuracy of SSRMDA algorithm with different α values
    Fig. 6. Overall classification accuracy of SSRMDA algorithm with different α values
    Classification diagrams of different algorithms on Indian Pines dataset
    Fig. 7. Classification diagrams of different algorithms on Indian Pines dataset
    Classification diagrams of different algorithms on Washington DC Mall dataset
    Fig. 8. Classification diagrams of different algorithms on Washington DC Mall dataset
    Algorithmni=5ni=10ni=15ni=20ni=30
    RAW51.81±2.37(0.463)59.48±1.72(0.547)65.43±1.39(0.613)68.45±1.03(0.645)71.72±1.04(0.681)
    PCA51.73±2.39(0.462)59.30±1.71(0.545)65.17±1.36(0.610)68.22±0.98(0.643)71.42±1.05(0.678)
    NPE50.17±2.32(0.445)56.65±1.81(0.516)61.86±1.67(0.574)64.78±1.35(0.605)67.02±1.24(0.629)
    LPP52.08±2.09(0.467)59.47±1.80(0.547)64.87±1.68(0.607)67.13±1.35(0.631)70.10±1.08(0.663)
    LDA54.82±2.38(0.498)63.71±1.70(0.595)69.87±1.55(0.662)72.26±1.06(0.688)75.12±1.10(0.719)
    MFA62.10±3.79(0.577)74.82±2.03(0.716)80.05±1.35(0.775)82.99±1.20(0.807)86.51±1.09(0.846)
    LGSFA60.80±4.10(0.563)72.56±1.94(0.691)80.38±1.62(0.778)83.71±0.99(0.815)88.05±1.20(0.864)
    DSSM54.15±3.30(0.490)62.63±2.95(0.582)72.08±1.51(0.686)74.44±1.23(0.712)76.91±1.17(0.739)
    LPNPE56.81±3.37(0.522)70.14±2.27(0.666)76.89±1.60(0.740)81.97±1.55(0.796)88.26±0.94(0.866)
    SSRLDE56.85±3.19(0.523)71.38±2.80(0.680)78.97±2.64(0.763)83.34±1.97(0.812)89.46±0.99(0.880)
    SSRMDA70.80±2.87(0.672)82.14±2.65(0.798)86.22±1.82(0.844)89.21±1.51(0.876)91.58±1.34(0.904)
    Table 1. Classification accuracy of different algorithms on Indian Pines dataset (number before ± indicates overall classification accuracy, and the unit is %; number after ± indicates standard deviation of ov
    ClassRAWPCANPELPPLDAMFALGSFADSSMLPNPESSRLDESSRMDA
    Alfalfa97.2297.2297.2297.2210010010097.22100100100
    Corn-Notill61.3361.1155.8260.2569.2683.5682.6359.1176.5579.6386.92
    Corn-mintill58.5558.5552.8954.7367.5275.8976.9956.5876.2677.6189.54
    Corn53.3053.7443.6148.0167.8492.0793.8344.0585.9090.3188.99
    Grass-pasture71.4671.2463.6367.4483.5189.2189.4373.5789.2189.8591.12
    Grass-trees90.4990.3585.1782.5197.9099.4499.5893.9882.9379.8699.58
    Grassp-asture-mowed100100100100100100100100100100100
    Hay-windrowed87.8287.8277.3581.1971.5897.4397.6588.0392.5298.5097.43
    Oats100100100100100100100100100100100
    Soybean-nottill77.5476.8169.0470.6275.3489.0885.4180.0684.8986.4686.25
    Soybean-mintill74.9374.7368.7070.1573.7383.4185.8272.1981.2183.4192.02
    Soybean-clean47.3346.6443.7146.1246.4786.2378.3143.3771.7783.82190.88
    Wheat96.9296.9296.9297.9497.9498.9798.9796.9298.4698.9798.97
    Woods76.5376.2173.9575.5678.3082.9084.2776.5384.1985.8085.08
    Buildings-Grass-Trees-Drives71.0171.2768.8869.1576.5985.6384.8472.8791.4988.0386.97
    Stone-Steel-Towers10010097.5910010010010098.79100100100
    OA72.2472.0166.6168.5474.6686.3786.3171.3382.4684.6690.37
    AA79.0378.9174.6576.3181.6291.4991.1178.3388.4690.1493.36
    Kappa0.6840.6820.6200.6420.7120.8450.8440.6740.8000.8260.890
    Table 2. Classification accuracy of each-class grand object on Indian Pines dataset obtained by different algorithms%
    Algorithmni=5ni=10ni=15ni=20ni=30
    RAW80.86±2.96(0.761)82.80±2.23(0.786)84.07±2.17(0.802)85.87±1.86(0.824)86.60±1.22(0.833)
    PCA80.86±2.96(0.761)82.79±2.23(0.786)84.06±2.18(0.802)85.86±1.86(0.824)86.58±1.23(0.833)
    NPE79.91±3.33(0.750)81.20±3.06(0.767)82.91±2.13(0.788)84.94±1.74(0.812)85.28±1.67(0.817)
    LPP80.21±3.35(0.753)82.24±1.91(0.779)83.47±1.87(0.795)85.46±1.81(0.819)86.39±1.72(0.831)
    LDA81.56±3.33(0.770)83.08±2.23(0.790)85.52±1.77(0.820)86.69±1.48(0.834)87.84±1.27(0.848)
    MFA84.49±2.51(0.806)87.92±2.25(0.849)90.98±2.20(0.887)91.87±0.89(0.898)92.70±0.59(0.908)
    LGSFA85.48±2.68(0.818)88.53±2.20(0.857)91.28±1.15(0.891)92.47±1.03(0.906)93.64±0.98(0.920)
    DSSM80.63±3.31(0.759)82.80±2.19(0.786)84.08±2.57(0.802)85.33±2.11(0.817)86.61±1.22(0.833)
    LPNPE78.71±5.15(0.736)86.65±2.63(0.834)87.75±2.36(0.847)89.14±1.02(0.864)90.34±1.06(0.879)
    SSRLDE79.45±5.36(0.744)86.51±4.22(0.832)87.34±3.30(0.843)89.62±1.37(0.870)90.86±1.19(0.886)
    SSRMDA88.73±2.15(0.859)92.78±1.19(0.910)94.04±0.98(0.925)95.35±0.73(0.942)96.67±0.73(0.958)
    Table 3. Classification accuracy of different algorithms on Washington DC Mall dataset (number before ± indicates overall classification accuracy, and the unit is %; number after ± indicates standard deviation
    ClassRAWPCANPELPPLDAMFALGSFADSSMLPNPESSRLDESSRMDA
    Road95.0495.0194.7194.3894.7697.8398.7195.1793.7295.0699.79
    Water94.1294.1293.5794.7496.3397.2498.2294.1399.2696.4598.39
    Building87.6787.6486.5686.5388.3391.4093.1587.6496.9395.3998.61
    Vegetation97.3497.3497.0197.2797.3797.8897.8897.3497.0896.4098.73
    Trail66.8366.8964.0469.3972.3589.5293.2066.6691.8682.3893.76
    Shadow67.9067.9065.0367.7368.2073.7880.4667.8672.8572.0582.66
    OA88.0988.0887.0587.9188.8792.8194.6488.1192.9091.6496.70
    AA84.8284.8283.4985.0186.2291.2893.6084.8091.9589.6295.49
    Kappa0.8500.8490.8370.8480.8600.9090.9330.8500.9110.8950.959
    Table 4. Classification accuracy of each-class ground object on Washington DC Mall dataset obtained by different algorithms%
    Hong Huang, Lihua Wang, Guangyao Shi. Spatially-Regularized Manifold Discriminant Analysis Algorithm for Hyperspectral Image Classification[J]. Acta Optica Sinica, 2020, 40(2): 0228001
    Download Citation