• Acta Optica Sinica
  • Vol. 41, Issue 7, 0724002 (2021)
Erwei Liu, Zengling Yang*, Lujia Han, Yuanping Huang, and Keke Liao
Author Affiliations
  • College of Engineering, China Agricultural University, Beijing 100083, China
  • show less
    DOI: 10.3788/AOS202141.0724002 Cite this Article Set citation alerts
    Erwei Liu, Zengling Yang, Lujia Han, Yuanping Huang, Keke Liao. Fabrication and SERS Activity of Cu2O-Ag Substrate by in-situ Growth[J]. Acta Optica Sinica, 2021, 41(7): 0724002 Copy Citation Text show less
    References

    [1] Sharma B, Frontiera R R, Henry A I et al. SERS: materials, applications, and the future[J]. Materials Today, 15, 16-25(2012).

    [2] Pang S, Yang T X, He L L. Review of surface enhanced Raman spectroscopic (SERS) detection of synthetic chemical pesticides[J]. TrAC Trends in Analytical Chemistry, 85, 73-82(2016).

    [3] Zhang Y Y, Huang Y Q, Zhai F L et al. Analyses of enrofloxacin, furazolidone and malachite green in fish products with surface-enhanced Raman spectroscopy[J]. Food Chemistry, 135, 845-850(2012).

    [4] Zhang D, Liang P, Yu Z et al. Self-assembled “bridge” substance for organochlorine pesticides detection in solution based on surface enhanced Raman scattering[J]. Journal of Hazardous Materials, 382, 121023(2020).

    [5] Usman M, Guo X, Wu Q S et al. Facile silicone oil-coated hydrophobic surface for surface enhanced Raman spectroscopy of antibiotics[J]. RSC Advances, 9, 14109-14115(2019).

    [6] Wang W E, Sang Q Q, Yang M et al. Detection of several quinolone antibiotic residues in water based on Ag-TiO2 SERS strategy[J]. Science of the Total Environment, 702, 134956(2020).

    [7] Chen Y, Yan X, Zhang X et al. Surface-enhanced Raman spectroscopy quantitative analysis of polycyclic aromatic hydrocarbons based on support vector machine algorithm[J]. Chinese Journal of Lasers, 46, 0311005(2019).

    [8] Xu Y, Bian J, Zhang W H. Principles and processes of nanometric localized-surface-plasmonic optical sensors[J]. Laser & Optoelectronics Progress, 56, 202407(2019).

    [9] Xin K, Shi X F, Zhang X et al. Aggregation of gold nanoparticles based on photothermal effect and its application in surface-enhanced Raman scattering[J]. Acta Optica Sinica, 40, 1930001(2020).

    [10] Yang C X, Qing C, Wang Q J et al. Synthesis of the hybrid CdS/Au flower-like nanomaterials and their SERS application[J]. Sensors and Actuators B: Chemical, 304, 127218(2020).

    [11] Huang D D, Zhao J C, Wang M L et al. Snowflake-like gold nanoparticles as SERS substrates for the sensitive detection of organophosphorus pesticide residues[J]. Food Control, 108, 106835(2020).

    [12] Li X X, Shang Y, Lin J et al. Temperature-induced stacking to create Cu2O concave sphere for light trapping capable of ultrasensitive single-particle surface-enhanced Raman scattering[J]. Advanced Functional Materials, 28, 1801868(2018).

    [13] Jin B B, He J H, Li J et al. Lotus seedpod inspired SERS substrates: a novel platform consisting of 3D sub-10 nm annular hot spots for ultrasensitive SERS detection[J]. Advanced Optical Materials, 6, 1800056(2018).

    [14] Nie B B, Luo Y Y, Shi J P et al. Bowl-like pore array made of hollow Au/Ag alloy nanoparticles for SERS detection of melamine in solid milk powder[J]. Sensors and Actuators B: Chemical, 301, 127087(2019).

    [15] Wang Y L, Yu Y C, Liu Y et al. Template-confined site-specific electrodeposition of nanoparticle cluster-in-bowl arrays as surface enhanced Raman spectroscopy substrates[J]. ACS Sensors, 3, 2343-2350(2018).

    [16] Dong D S, Shi Q Q, Sikdar D et al. Site-specific Ag coating on concave Au nanoarrows by controlling the surfactant concentration[J]. Nanoscale Horizons, 4, 940-946(2019).

    [17] Zhao X H, Deng M, Rao G F et al. High-performance SERS substrate based on hierarchical 3D Cu nanocrystals with efficient morphology control[J]. Small, 14, 1802477(2018).

    [18] Zhou X, Liu G Q, Zhang H W et al. Porous zeolite imidazole framework-wrapped urchin-like Au-Ag nanocrystals for SERS detection of trace hexachlorocyclohexane pesticides via efficient enrichment[J]. Journal of Hazardous Materials, 368, 429-435(2019).

    [19] Li D, Cao X K, Zhang Q M et al. Facile in situ synthesis of core-shell MOF@Ag nanoparticle composites on screen-printed electrodes for ultrasensitive SERS detection of polycyclic aromatic hydrocarbons[J]. Journal of Materials Chemistry A, 7, 14108-14117(2019).

    [20] Kirchon A, Feng L, Drake H F et al. From fundamentals to applications: a toolbox for robust and multifunctional MOF materials[J]. Chemical Society Reviews, 47, 8611-8638(2018).

    [21] Wang Y D, Zhang M Y, Feng L et al. Tape-imprinted hierarchical lotus seedpod-like arrays for extraordinary surface-enhanced Raman spectroscopy[J]. Small, 15, 1804527(2019).

    [22] Du H C, Chen Z Y, Chen N et al. Fabrication of a novel concave cone surface-enhanced Raman scattering fiber probe[J]. Chinese Journal of Lasers, 44, 0213001(2017).

    [23] Peng Q Q, Wang N, Zhu Y et al. Hydrophobic AgNPs: one-step synthesis in aqueous solution and their greatly enhanced performance for SERS detection[J]. Journal of Materials Chemistry C, 7, 10465-10470(2019).

    [24] Wei Q, Wang Y, Qin H Y et al. Construction of rGO wrapping octahedral Ag-Cu2O heterostructure for enhanced visible light photocatalytic activity[J]. Applied Catalysis B: Environmental, 227, 132-144(2018).

    [25] Jiang L, You T, Yin P et al. Surface-enhanced Raman scattering spectra of adsorbates on Cu2O nanospheres: charge-transfer and electromagnetic enhancement[J]. Nanoscale, 5, 2784-2789(2013).

    [26] Shinagawa T, Onoda M, Fariza B M et al. Annealing effects and photoelectric properties of single-oriented Cu2O films electrodeposited on Au(111)/Si(100) substrates[J]. Journal of Materials Chemistry A, 1, 9182(2013).

    [27] Toe C Y, Scott J, Amal R et al. Recent advances in suppressing the photocorrosion of cuprous oxide for photocatalytic and photoelectrochemical energy conversion[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 40, 191-211(2019).

    [28] Wu H, Tan H L, Toe C Y et al. Photocatalytic and photoelectrochemical systems: similarities and differences[J]. Advanced Materials, 32, 1904717(2020).

    [29] Zhang Q, Luan J Y, Tang Y G et al. A facile annealing strategy for achieving in situ controllable Cu2O nanoparticle decorated copper foil as a current collector for stable lithium metal anodes[J]. Journal of Materials Chemistry A, 6, 18444-18448(2018).

    [30] Sun S D, Zhang X J, Yang Q et al. Cuprous oxide (Cu2O) crystals with tailored architectures: a comprehensive review on synthesis, fundamental properties, functional modifications and applications[J]. Progress in Materials Science, 96, 111-173(2018).

    [31] Liu C, Song Q C, Chen J N et al. Electromagnetic and chemical enhancements of surface-enhanced Raman scattering spectra from Cu2O hexagonal nanoplates[J]. Advanced Materials Interfaces, 6, 1900534(2019).

    [32] Luo H Q, Zhou J, Zhong H H et al. Polyhedron Cu2O@Ag composite microstructures: synthesis, mechanism analysis and structure-dependent SERS properties[J]. RSC Advances, 6, 99105-99113(2016).

    [33] Zhang W, Wen X, Yang S et al. Single-crystalline scroll-type nanotube arrays of copper hydroxide synthesized at room temperature[J]. Advanced Materials, 15, 822-825(2003).

    [34] Wang J, Cui F L, Chu S B et al. In situ growth of noble-metal nanoparticles on Cu2O nanocubes for surface-enhanced Raman scattering detection[J]. ChemPlusChem, 79, 684-689(2014).

    [35] Xiong L B, Xiao H Q, Chen S S et al. Fast and simplified synthesis of cuprous oxide nanoparticles: annealing studies and photocatalytic activity[J]. RSC Adv, 4, 62115-62122(2014).

    [36] Han S, Flewitt A J. Analysis of the conduction mechanism and copper vacancy density in p-type Cu2O thin films[J]. Scientific Reports, 7, 5766(2017).

    [37] Lin J, Hao W, Shang Y et al. Direct experimental observation of facet-dependent SERS of Cu2O polyhedra[J]. Small, 14, 1703274(2018). http://evidences.carpha.bvsalud.org/search/resource/pt/mdl-29239098

    [38] Guo J, Liu G Q, Ma Q L et al. Fabrication of Ag-nanosheets-built micro/nanostructured arrays via in situ conversion on Cu2O-coated Si nanocone platform and their highly structurally-enhanced SERS effect[J]. Nanotechnology, 30, 345302(2019).

    [39] Chen L, Zhao Y, Zhang Y J et al. Design of Cu2O-Au composite microstructures for surface-enhanced Raman scattering study[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 507, 96-102(2016).

    [40] Fu S Y, Hsu Y K, Chen M H et al. Silver-decorated hierarchical cuprous oxide micro/nanospheres as highly effective surface-enhanced Raman scattering substrates[J]. Optics Express, 22, 14617-14624(2014).

    [41] Yang L H, Lv J, Sui Y M et al. Fabrication of Cu2O/Ag composite nanoframes as surface-enhanced Raman scattering substrates in a successive one-pot procedure[J]. CrystEngComm, 16, 2298-2304(2014).

    Erwei Liu, Zengling Yang, Lujia Han, Yuanping Huang, Keke Liao. Fabrication and SERS Activity of Cu2O-Ag Substrate by in-situ Growth[J]. Acta Optica Sinica, 2021, 41(7): 0724002
    Download Citation