• Acta Optica Sinica
  • Vol. 42, Issue 19, 1914003 (2022)
Guijuan Zhao1、2, Yulei Wang1、2、*, Bin Chen1、2, Bingzheng Yan1、2, Zhenxu Bai1、2, and Lü Zhiwei1、2
Author Affiliations
  • 1Center for Advanced Laser Technology, Hebei University of Technology, Tianjin 300401, China
  • 2Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin 300401, China
  • show less
    DOI: 10.3788/AOS202242.1914003 Cite this Article Set citation alerts
    Guijuan Zhao, Yulei Wang, Bin Chen, Bingzheng Yan, Zhenxu Bai, Lü Zhiwei. LD Side-Pumped Passively Q-Switched Ring Cavity Single-Longitudinal-Mode Laser[J]. Acta Optica Sinica, 2022, 42(19): 1914003 Copy Citation Text show less
    References

    [1] Chen C, Fu J Q, Gai Y Y et al. Damaged bridges over water: using high-spatial-resolution remote-sensing images for recognition, detection, and assessment[J]. IEEE Geoscience and Remote Sensing Magazine, 6, 69-85(2018).

    [2] Ohira T, Segawa T, Nagai K J et al. Large area InP submicron two-dimensional (2D) periodic structures fabricated by two-time laser holography[J]. Japanese Journal of Applied Physics, 41, 1085-1089(2002).

    [3] Bode N N, Meylahn F, Willke B. Sequential high power laser amplifiers for gravitational wave detection[J]. Optics Express, 28, 29469-29478(2020).

    [4] Chen Y L, Zhu X L, Zhang J X et al. Development of pulsed single-frequency 2 μm all-solid-state laser[J]. Laser & Optoelectronics Progress, 57, 050006(2020).

    [5] Guan H, Novack A, Galfsky T et al. Widely-tunable, narrow-linewidth III-V/silicon hybrid external-cavity laser for coherent communication[J]. Optics Express, 26, 7920-7933(2018).

    [6] Huo X W, Qi Y Y, Zhang Y et al. Research development of 589 nm laser for sodium laser guide stars[J]. Optics and Lasers in Engineering, 134, 106207(2020).

    [7] You W, Yang X Z, Chen W B et al. Review of 589 nm sodium laser guide stars (invited)[J]. Electro-Optic Technology Application, 36, 1-14, 22(2021).

    [8] Wang H L, Cha S, Kong H J et al. Rotating off-centered lens in SBS phase conjugation mirror for high-repetition-rate operation[J]. Optics Express, 27, 9895-9905(2019).

    [9] Bai Z X, Zhao Z A, Tian M H et al. A comprehensive review on the development and applications of narrow-linewidth lasers[M]. Microwave and optical technology letters(2021).

    [10] Bai Z X, Yuan H, Liu Z H et al. Stimulated Brillouin scattering materials, experimental design and applications: a review[J]. Optical Materials, 75, 626-645(2018).

    [11] Zhang K S, Lu H D, Li Y J et al. Progress on high-power low-noise continuous-wave single-frequency all-solid-state lasers[J]. Chinese Journal of Lasers, 48, 0501002(2021).

    [12] Chen Y J, Lin Y F, Huang J H et al. Single-longitudinal-mode 1521 nm passively Q-switched Er∶Yb∶YAl3(BO3)4 pulse microchip laser[J]. Optics Express, 27, 26080-26086(2019).

    [13] Liu W, Ju Y L, Dai T Y et al. Single-longitudinal-mode Ho∶LuAG laser at 2.1 μm[J]. Laser Physics, 26, 025002(2016).

    [14] Mi S Y, Chen Y, Liu G Y et al. Measurement of optical homogeneity of ZnGeP2 crystal using a 2.02 µm single-longitudinal-mode Tm∶LuAG ring laser[J]. Applied Optics, 59, 5864-5869(2020).

    [15] Li J, Yang S H, Zhao C M et al. High efficient single-frequency output at 1991 nm from a diode-pumped Tm∶YAP coupled cavity[J]. Optics Express, 18, 12161-12167(2010).

    [16] Lux O, Sarang S, Kitzler O et al. Intrinsically stable high-power single longitudinal mode laser using spatial hole burning free gain[J]. Optica, 3, 876-881(2016).

    [17] Sarang S, Kitzler O, Lux O et al. Single-longitudinal-mode diamond laser stabilization using polarization-dependent Raman gain[J]. OSA Continuum, 2, 1028-1038(2019).

    [18] Yang X Z, Kitzler O, Spence D J et al. Single-frequency 620 nm diamond laser at high power, stabilized via harmonic self-suppression and spatial-hole-burning-free gain[J]. Optics Letters, 44, 839-842(2019).

    [19] Wu E, Pan H, Zhang S et al. High power single-longitudinal-mode operation in a twisted-mode-cavity laser with a c-cut Nd∶GdVO4 crystal[J]. Applied Physics B, 80, 459-462(2005).

    [20] Jin D, Bai Z X, Wang Q Z et al. Doubly Q-switched single longitudinal mode Nd: YAG laser with electro-optical modulator and Cr4+∶YAG[J]. Optics Communications, 463, 125500(2020).

    [21] Yang X Z, Bai Z X, Chen D J et al. Widely-tunable single-frequency diamond Raman laser[J]. Optics Express, 29, 29449-29457(2021).

    [22] Niu C D, Dai R F, Liu R K et al. Single-longitudinal-mode selection technology and application of solid-state laser[J]. Electro-Optic Technology Application, 35, 38-47(2020).

    [23] Lei Y, Mao A F, Li Y L et al. Research on single longitudinal mode laser based on F-P etalon and Q-switched delay[J]. Optik, 167, 1-6(2018).

    [24] Jiao Y C, Ma Y Y, Li Y J et al. All-solid-state single-longitudinal-mode pulse Nd∶YVO4 ring laser[J]. Acta Sinica Quantum Optica, 20, 81-84(2014).

    [25] Shen Y, Bo Y, Zong N et al. A 37 mJ, 100 Hz, high energy single frequency oscillator[J]. Chinese Physics B, 30, 084208(2021).

    [26] Li Y Z, Zhang M, Yan D Y et al. Highly efficient passively Q-switched laser based on Yb∶YAG/YAG/Cr∶YAG/YAG composite crystal[J]. Chinese Journal of Lasers, 48, 2101005(2021).

    [27] Lei H, Liu Q, Wang Y et al. Passively Q-switched pulse laser with large core size crystal waveguide near diffraction-limit beam quality output[J]. Acta Optica Sinica, 41, 1214001(2021).

    [28] Sooy W R. The natural selection of modes in a passive Q-switched laser[J]. Applied Physics Letters, 7, 36-37(1965).

    [29] Li L, Zhang Q J, Zhang C L et al. Transient thermal effect of Nd∶YAG ceramics with pulsed laser diode bar side-pumped[J]. Infrared and Laser Engineering, 50, 20200495(2021).

    [30] Negri J R, Pirzio F, Agnesi A. Passively Q-switched single-frequency Nd∶YVO4 ring laser with external feedback[J]. Optics Express, 26, 11903-11908(2018).

    Guijuan Zhao, Yulei Wang, Bin Chen, Bingzheng Yan, Zhenxu Bai, Lü Zhiwei. LD Side-Pumped Passively Q-Switched Ring Cavity Single-Longitudinal-Mode Laser[J]. Acta Optica Sinica, 2022, 42(19): 1914003
    Download Citation