• Laser & Optoelectronics Progress
  • Vol. 53, Issue 6, 60605 (2016)
Chen Yali* and Yang Weibing
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop53.060605 Cite this Article Set citation alerts
    Chen Yali, Yang Weibing. All-Solid Chalcogenide Microstructured Optical Fiber with Two Zero-Dispersion Mid-Infrared Wavelengths[J]. Laser & Optoelectronics Progress, 2016, 53(6): 60605 Copy Citation Text show less
    References

    [1] Russell P J. Photonic-crystal fibers[J]. IEEE J Lightwave Technol, 2006, 24(12): 4729-4749.

    [2] Dudley J M, Genty G, Coen S. Supercontinuum generation in photonic crystal fiber[J]. Rev Mod Phys, 2006, 78(4): 1135-1184.

    [3] Wang Wei, Hou Lantian. Present situation and future development in photonic crystal fibers[J]. Laser & Optoelectronics Progress, 2008, 45(2): 43-58.

    [4] Knight J C, Birks T A, J Russell P S, et al.. All-silica single-mode optical fiber with photonic crystal cladding[J]. Opt Lett, 1996, 21(19): 1547-1549.

    [5] Singh S P, Varshney S K. Tunable optical parametric amplification characteristics of liquid-filled chalcogenide photonic crystal fibers[J]. Opt Lett, 2013, 38(19): 3846-3849.

    [6] Lee T, Jung Y, Codemard C A, et al.. Broadband third harmonic generation in tapered silica fibres[J]. Opt Express, 2012, 20(8): 8503-8511.

    [7] Hu Minglie, Song Youjian, Liu Bowen et al.. Development and advanced applications of femtosecond photonic crystal fiber laser technique[J]. Chinese J Lasers, 2009, 36(7): 1660-1670.

    [8] Wang Xiaoyan, Li Shuguang, Liu Shuo, et al.. Mid-infrared As2S3 chalcogenide glass broadband normal dispersion photonic crystal fiber with high birefringence and high nonlinearity[J]. Acta Physica Sinica, 2011, 60(6): 367-372.

    [9] Demircan A, Amiranashvili S, Brée C, et al.. Compressible octave spanning supercontinuum generation by two-pulse collisions[J]. Phys Rev Lett, 2013, 110(23): 233901.

    [10] Jia Zhen′an, Wang Junfeng, Zhou Hong, et al.. Research on optical fiber hydrogen sulfide gas detection with absorption spectrum[J]. Laser & Optoelectronics Progress, 2013, 50(7): 073001.

    [11] Zhao Xingtao, Zheng Yi, Liu Xiaoxu, et al.. Simulation of photonic crystal fiber with three and four zero-dispersion wavelengths[J]. Acta Physica Sinica, 2012, 61(19): 194210.

    [12] Wang Wei, Yang Bo. Dispersion and birefringence analysis photonic crystal fiber with rhombus air-core structure[J]. Acta Physica Sinica, 2012, 61(6): 064601.

    [13] Hou Yu, Zhou Guiyao, Hou Lantian, et al.. Analysis of dispersion properties of octagonal structured photonic crystal fiber with double cladding[J]. Chinese J Lasers, 2010, 37(4): 1068-1072.

    [14] Bi W, Li X, Gao J, et al.. Numerical simulations of the ultrabroadband supercontinuum generation by dual-wavelength pumping in photonic crystal fiber with two zero dispersion wavelengths[J]. Applied Optics, 2015, 54(14): 4542-4548.

    [15] Wang Cui, Dai Shixun, Zhang Peiqing, et al.. Research progress of infrared supercontinuum generation in chalcogenide glass fibers[J]. Laser & Optoelectronics Progress, 2015, 52(3): 030001.

    [16] Boucon A, Sylvestre T, Kien P H, et al.. Supercontinuum generation by nanosecond dual-pumping near the two zero-dispersion wavelengths of a photonic crystal fiber[J]. Opt Commun, 2011, 284(1): 467-470.

    [17] Inoue K. Four-wave mixing in an optical fiber in the zero-dispersion wavelength region[J]. IEEE J Lightwave Technol, 1992, 10(11): 1553-1561.

    [18] Domingue S R, Bartels R A. Three-photon excitation source at 1250 nm generated in a dual zero dispersion wavelength nonlinear fiber[J]. Opt Express, 2014, 22(25): 30777-30785.

    [19] Yin Dongmei, Dai Shixun, Wang Xunsi, et al.. Research progress of infrared chalcogenide glass fibers in sensing fields[J]. Laser & Optoelectronics Progress, 2013, 50(2): 020010.

    [20] Dai Shixun, Yu Xingyan, Zhang Wei, et al.. Research progress of chalcogenide glass photonic crystal fibers[J]. Laser & Optoelectronics Progress, 2011, 48(9): 090602.

    [21] Mouawad O, Picot-Clémente J, Amrani F, et al.. Multioctave midinfrared supercontinuum generation in suspended-core chalcogenide fibers[J]. Opt Lett, 2014, 39(9): 2684-2687.

    [22] Cheng T L, Kanou Y, Asano K, et al.. Soliton self-frequency shift and dispersive wave in a hybrid four-hole AsSe2-As2S5 microstructured optical fiber[J]. Appl Phys Lett, 2014, 104(12): 121911.

    [23] Sun Lihong, Wang Xunsi, Zhu Qingde, et al.. Advance on the exploration and evaluation of highly nonlinear chalcogenide glasses[J]. Laser & Optoelectronics Progress, 2016, 53(2): 020001.

    [24] White R T, Monro T M. Cascaded Raman shifting of high-peak-power nanosecond pulses in As2S3 and As2Se3 optical fibers[J]. Opt Lett, 2011, 36(12): 2351-2353.

    [25] Yee Kane. Numerical solution of initial boundary value problems involving Maxwell′s equation in isotropic media[J]. IEEE Trans on Antennas and Propagation, 1966: 302-307.

    CLP Journals

    [1] Tian Cuiping, Wang Yingying, Shi Hongxing, Cheng Zhaochen, Wang Pu. Mid-Infrared Raman Laser Source Based on Liquid-Core Fiber[J]. Laser & Optoelectronics Progress, 2017, 54(5): 51405

    Chen Yali, Yang Weibing. All-Solid Chalcogenide Microstructured Optical Fiber with Two Zero-Dispersion Mid-Infrared Wavelengths[J]. Laser & Optoelectronics Progress, 2016, 53(6): 60605
    Download Citation