• Laser & Optoelectronics Progress
  • Vol. 58, Issue 23, 2314009 (2021)
Jingfa Lei1、2, Yongsheng Ge1, Tao Liu1、2、*, and Wei Bai1
Author Affiliations
  • 1School of Mechanical and Electrical Engineering, Anhui Jianzhu University, Hefei , Anhui 230601, China
  • 2Anhui Education Department Key Laboratory of Intelligent Manufacturing of Construction Machinery, Hefei , Anhui 230601, China
  • show less
    DOI: 10.3788/LOP202158.2314009 Cite this Article Set citation alerts
    Jingfa Lei, Yongsheng Ge, Tao Liu, Wei Bai. Research on Dynamic Mechanical Properties of 316L Stainless Steel Processed Using Selective Laser Melting[J]. Laser & Optoelectronics Progress, 2021, 58(23): 2314009 Copy Citation Text show less
    References

    [1] Casati R, Lemke J, Vedani M. Microstructure and fracture behavior of 316L austenitic stainless steel produced by selective laser melting[J]. Journal of Materials Science & Technology, 32, 738-744(2016).

    [2] Yang Y Q, Chen J, Song C H et al. Current status and progress on technology of selective laser melting of metal parts[J]. Laser & Optoelectronics Progress, 55, 011401(2018).

    [3] Sander J, Hufenbach J, Bleckmann M et al. Selective laser melting of ultra-high-strength TRIP steel: processing, microstructure, and properties[J]. Journal of Materials Science, 52, 4944-4956(2017).

    [4] Zhao J L, Zhai Z F, Sun D et al. Antibacterial durability and biocompatibility of antibacterial-passivated 316L stainless steel in simulated physiological environment[J]. Materials Science and Engineering: C, 100, 396-410(2019).

    [5] Saeidi K, Neikter M, Olsen J et al. 316L stainless steel designed to withstand intermediate temperature[J]. Materials & Design, 135, 1-8(2017).

    [6] Zhang Y, Wu L M, Guo X Y et al. Additive manufacturing of metallic materials: a review[J]. Journal of Materials Engineering and Performance, 27, 1-13(2018).

    [7] Yu C F, Zhao C C, Zhang Z F et al. Tensile properties of selective laser melted 316L stainless steel[J]. Acta Metallurgica Sinica, 56, 683-692(2020).

    [8] Yin Y, Liu P Y, Lu C et al. Microstructure and tensile properties of selective laser melting forming 316L stainless steel[J]. Transactions of the China Welding Institution, 39, 77-81, 132-133(2018).

    [9] Ni X Q, Kong D C, Wen Y et al. Anisotropy in mechanical properties and corrosion resistance of 316L stainless steel fabricated by selective laser melting[J]. International Journal of Minerals, Metallurgy, and Materials, 26, 319-328(2019).

    [10] Ye J H, Chen M H, Wang N et al. Flow behavior of TA12 titanium alloy based on modified JC model at high temperature[J]. The Chinese Journal of Nonferrous Metals, 29, 733-741(2019).

    [11] Zhou T F, Wu J J, Liang Z Q et al. A novel constitutive model for Ti-6Al-4V alloy based on dislocation pile-up theory[J]. Materials Science and Technology, 33, 1379-1387(2017).

    [12] Deng Y F, Zhang Y, Wu H P et al. Dynamic mechanical properties and modification of J-C constitutive model of 6061-T651 aluminum alloy[J]. Journal of Mechanical Engineering, 56, 74-81(2020).

    [13] Dou E H, Xiao M L, Ke L D et al. Effect of heat treatment on microstructure and mechanical properties of selective-laser-melted TC11 titanium alloys[J]. Chinese Journal of Lasers, 48, 0602117(2021).

    [14] Yang C, Dong Z H, Chi C T et al. Microstructure and mechanical properties of 24CrNiMo alloy steel formed by selective laser melting[J]. Chinese Journal of Lasers, 47, 0502008(2020).

    [15] Zan L, Chen J, Lin X et al. Research on microstructures of deposited TC21 titanium alloy by laser rapid forming[J]. Rare Metal Materials and Engineering, 36, 612-616(2007).

    [16] Beal V E, Erasenthiran P, Hopkinson N et al. The effect of scanning strategy on laser fusion of functionally graded H13/Cu materials[J]. The International Journal of Advanced Manufacturing Technology, 30, 844-852(2006).

    [17] Marchese G, Colera X G, Calignano F et al. Characterization and comparison of Inconel 625 processed by selective laser melting and laser metal deposition[J]. Advanced Engineering Materials, 19, 1600635(2017).

    [18] Zong X W, Gao Q, Zhou H Z et al. Effects of bulk laser energy density on anisotropy of selective laser sintered 316L stainless steel[J]. Chinese Journal of Lasers, 46, 0502003(2019).

    [19] Pan A Q, Zhang H, Wang Z M. Process parameters and microstructure of Ni-based single crystal superalloy processed by selective laser melting[J]. Chinese Journal of Lasers, 46, 1102007(2019).

    [20] Kong D C, Dong C F, Wei S L et al. About metastable cellular structure in additively manufactured austenitic stainless steels[J]. Additive Manufacturing, 38, 101804(2021).

    [21] He K T, Zhou L, Yang L C. Microstructure and mechanical properties of 316L stainless steel in the selective laser melting[J]. Laser & Optoelectronics Progress, 57, 091404(2020).

    [22] Qin W B, Li J S, Liu Y Y et al. Effects of grain size on tensile property and fracture morphology of 316L stainless steel[J]. Materials Letters, 254, 116-119(2019).

    [23] Gao X, Wu H B, Tang D et al. Six different mathematical models to predict the hot deformation behavior of C71500 cupronickel alloy[J]. Rare Metal Materials and Engineering, 49, 4129-4141(2020).

    [24] Zhou L, Wang Z H, Wen H M. On the accuracy of the Johnson-Cook constitutive model for metals[J]. Chinese Journal of High Pressure Physics, 33, 3-16(2019).

    [25] Wei G, Zhang W, Deng Y F. Identification and validation of constitutive parameters of 45 Steel based on J-C model[J]. Journal of Vibration and Shock, 38, 173-178(2019).

    Jingfa Lei, Yongsheng Ge, Tao Liu, Wei Bai. Research on Dynamic Mechanical Properties of 316L Stainless Steel Processed Using Selective Laser Melting[J]. Laser & Optoelectronics Progress, 2021, 58(23): 2314009
    Download Citation