• Chinese Optics Letters
  • Vol. 22, Issue 10, 101301 (2024)
Lixin Liu1, Jun Gou1,2,3,*, Chunyu Li1, Jiayue Han1..., Xiutao Yang1, Jin Chen1, Zijian Zhang1, Zheyuan Xie1, He Yu1,2, Zhiming Wu1,2 and Jun Wang1,2|Show fewer author(s)
Author Affiliations
  • 1School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
  • 2State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
  • 3Key Laboratory of Science and Technology on Infrared Detector, Luoyang 471099, China
  • show less
    DOI: 10.3788/COL202422.101301 Cite this Article Set citation alerts
    Lixin Liu, Jun Gou, Chunyu Li, Jiayue Han, Xiutao Yang, Jin Chen, Zijian Zhang, Zheyuan Xie, He Yu, Zhiming Wu, Jun Wang, "Enhanced efficiency of high-speed Si and Si-based PbSe MSM photodiodes with integrated photon-trapping holes at 800–1550 nm wavelengths," Chin. Opt. Lett. 22, 101301 (2024) Copy Citation Text show less
    References

    [1] J. A. Tatum, D. Gazula, L. A. Graham et al. VCSEL based interconnects for current and future data centers. J. Lightwave Technol., 33, 727(2015).

    [2] M. A. Green, M. J. Keevers. Optical properties of intrinsic silicon at 300 K. Prog. Photovoltaics, 3, 189(1995).

    [3] Y. Park, E. Drouard, O. E. Daif et al. Absorption enhancement using photonic crystals for silicon thin film solar cells. Opt. Express, 17, 14312(2009).

    [4] H. Shigeta, M. Fujita, Y. Tanaka et al. Enhancement of photocurrent in ultrathin active-layer photodetecting devices with photonic crystals. Appl. Phys. Lett., 101, 397(2012).

    [5] S. E. Han, G. Chen. Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics. Nano Lett., 10, 1012(2010).

    [6] P. Kuang, S. Eyderman, M. L. Hsieh et al. Achieving an accurate surface profile of a photonic crystal for near-unity solar absorption in a super thin-film architecture. ACS Nano, 10, 6116(2016).

    [7] Y.-B. Chen, Z. Zhang. Heavily doped silicon complex gratings as wavelength-selective absorbing surfaces. J. Phys. D. Appl. Phys., 41, 095406(2008).

    [8] J. W. Leem, D. H. Joo, J. S. Yu. Biomimetic parabola-shaped AZO subwavelength grating structures for efficient antireflection of Si-based solar cells. Sol. Energy Mat. Solar Cell, 95, 2221(2011).

    [9] Q. Cheng, P. Li, J. Lu et al. Silicon complex grating with different groove depths as an absorber for solar cells. J. Quantum Spectrosc., 132, 70(2014).

    [10] L. L. Yang, Y. M. Xuan, Y. G. Han et al. Investigation on the performance enhancement of silicon solar cells with an assembly grating structure. Energy Convers. Manage., 54, 30(2012).

    [11] Z. Zhang. Nano/microscale Heat Transfer(2007).

    [12] E. Garnett, P. Yang. Light trapping in silicon nanowire solar cells. Nano Lett., 10, 1082(2010).

    [13] M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz et al. Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nat. Mater., 9, 239(2010).

    [14] J. Zhu, C. M. Hsu, Z. Yu et al. Nanodome solar cells with efficient light management and self-cleaning. Nano Lett., 10, 1979(2010).

    [15] C. Rockstuhl, F. Lederer. Photon management by metallic nanodiscs in thin film solar cells. Appl. Phys. Lett., 94, 449(2009).

    [16] H. Lin, H. Y. Cheung, F. Xiu et al. Developing controllable anisotropic wet etching to achieve silicon nanorods, nanopencils and nanocones for efficient photon trapping. J. Mater. Chem. A, 1, 9942(2013).

    [17] J. Zhu, Z. Yu, G. F. Burkhard et al. Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. Nano Lett., 9, 279(2009).

    [18] Z. Chen, J. F. Li, T. Z. Li. A CRISPR/Cas12a-empowered surface plasmon resonance platform for rapid and specific diagnosis of the Omicron variant of SARS-CoV-2. Natl. Sci. Rev., 9, 104(2022).

    [19] F. Zheng, Z. Chen, J. F. Li et al. A Highly sensitive CRISPR-empowered surface plasmon resonance sensor for diagnosis of inherited diseases with femtomolar-level real-time quantification. Adv. Sci., 9, 2105231(2022).

    [20] Y. Gao, H. Cansizoglu, K. G. Polat et al. Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes. Nat Photonics, 11, 301(2017).

    [21] Y. Gao, H. Cansizoglu, S. Ghandiparsi et al. High speed surface illuminated Si photodiode using microstructured holes for absorption enhancements at 900–1000 nm wavelength. ACS Photonics, 4, 2053(2017).

    [22] C. Bartolo-Perez, W. Qarony, S. Ghandiparsi et al. Maximizing absorption in photon trapping ultra-fast silicon photodetectors. Adv. Photonics Res., 2, 2000190(2020).

    [23] J. Gou, H. Cansizoglu, C. Bartolo-Perez et al. Rigorous coupled-wave analysis of absorption enhancement in vertically illuminated silicon photodiodes with photon-trapping hole arrays. Nanophotonics, 8, 1747(2019).

    [24] H. Ito, T. Furuta, S. Kodama et al. InP/InGaAs uni-travelling-carrier photodiode with 310 GHz bandwidth. Electron. Lett., 36, 1809(2000).

    [25] Y. Muramoto, T. Ishibashi. InP/InGaAs pin photodiode structure maximising bandwidth and efficiency. Electron. Lett., 39, 1749(2003).

    [26] J. C. Campbell, A. Beling. Heterogeneously integrated photodiodes on silicon. IEEE J. Quantum Electron., 51, 0600506(2015).

    [27] H. Cansizoglu, C. Bartolo-Perez, Y. Gao et al. Surface-illuminated photon-trapping high-speed Ge-on-Si photodiodes with improved efficiency up to 1700 nm. Photonics Res., 6, 734(2018).

    [28] W. Qarony, A. S. Mayet, E. P. Devine et al. Achieving higher photoabsorption than group III-V semiconductors in ultrafast thin silicon photodetectors with integrated photon-trapping surface structures. Adv. Photon. Nexus, 2, 056001(2023).

    [29] H. Cansizoglu, A. S. Mayet, S. Ghandiparsi et al. Dramatically enhanced efficiency in ultra-fast silicon MSM photodiodes via light trapping structures. IEEE Photon. Tech. Lett., 31, 1619(2019).

    [30] K. Rush, S. Draving, J. Kerley. Characterizing high-speed oscilloscopes. Spectrum IEEE, 27, 38(1990).

    [31] M. O. Kuzivanov, S. P. Zimin, A. V. Fedorov et al. Raman scattering in lead selenide films at a low excitation level. Opt. Spectrosc., 119, 938(2015).

    Lixin Liu, Jun Gou, Chunyu Li, Jiayue Han, Xiutao Yang, Jin Chen, Zijian Zhang, Zheyuan Xie, He Yu, Zhiming Wu, Jun Wang, "Enhanced efficiency of high-speed Si and Si-based PbSe MSM photodiodes with integrated photon-trapping holes at 800–1550 nm wavelengths," Chin. Opt. Lett. 22, 101301 (2024)
    Download Citation