• Chinese Journal of Quantum Electronics
  • Vol. 34, Issue 2, 241 (2017)
Lingchao KONG1、* and Yu LIU1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461. 2017.02.016 Cite this Article
    KONG Lingchao, LIU Yu. Sensing characteristics of surface plasmon resonance based on embedded gold nanoparticle array[J]. Chinese Journal of Quantum Electronics, 2017, 34(2): 241 Copy Citation Text show less
    References

    [1] Luan N, Yao J. Surface plasmon resonance sensor based on exposed-core microstructured optical fiber placed with a silver wire[J]. IEEE Photonics Journal, 2016, 8(1): 1-8.

    [2] Choi I, Choi Y. Plasmonic nanosensors: Review and prospect[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18(3): 1110-1121.

    [3] Mohseni S, Moghadam T T, Dabirmanesh B, et al. Development of a label-free SPR sensor for detection of matrixmetalloproteinase-9 by antibody immobilization on carboxymethyldextran chip[J]. Biosensors and Bioelectronics, 2016, 81(2): 510-516.

    [4] Ashley J, Piekarska M, Segers C, et al. An SPR based sensor for allergens detection[J]. Biosensors and Bioelectronics, 2016, 88(7): 109-113.

    [5] Li Z, Chen T, Zhang Z, et al. Highly sensitive surface plasmon resonance sensor utilizing a long period grating with photosensitive cladding[J]. Applied Optics, 2016, 55(6): 123-124.

    [6] Cai G, Li W, Chen Y, et al. Modeling and design of a plasmonic sensor for high sensing performance and clear registration[J]. IEEE Photonics Journal, 2016, 8(1): 1-12.

    [7] Chen S, Liu Y, Liu Q, et al. Localized surface plasmon resonance-based micro-capillary biosensor[J]. IEEE Photonics Technology Letters, 2016, 2(2): 2195-2198.

    [10] Hayashi S, Nesterenko D V, Rahmouni A, et al. Observation of Fano line shapes arising from coupling between surface plasmon polariton and waveguide modes[J]. Applied Physics Letters, 2016, 108(5): 2257-2262.

    [11] Wen K, Hu Y, et al. Single/dual Fano resonance based on plasmonic metal-dielectric-metal waveguide[J]. Plasmonics, 2016, 11(1): 315-321.

    [12] Chen J, Xu R, Mao P, et al. Realization of Fanolike resonance due to diffraction coupling of localized surface plasmon resonances in embedded nanoantenna arrays[J]. Plasmonics, 2015, 10(2): 341-346.

    [13] Bossardgiannesini L, Cruguel H, Lacaze E, et al. Plasmonic properties of gold nanoparticles on silicon substrates: Understanding Fano-like spectra observed in reflection[J]. Applied Physics Letters, 2016, 109(11): 160-162.

    [14] He J, Zhang X. Synchronous tuning of twined resonance modes with controllable spectral separation in plasmonic gratings[J]. Plasmonics, 2016, 11(3): 1-6.

    [15] Cai Z J, Liu G Q, Liu Z Q, et al. Subradiant, superradiant plasmon modes and Fano resonance in a multilayer nanocylinder array standing on a thin metal film[J]. Plasmonics, 2016, 11(2): 683-688.

    [16] Auguié B, Barnes W L. Collective resonances in gold nanoparticle arrays[J]. Physical Review Letters, 2008, 101(14): 28-31.

    [17] Woyessa G, Nielsen K, Stefani A, et al. Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor[J]. Optics Express, 2016, 24(2): 253-254.

    [18] Karasiński P. Sensor properties of planar waveguide structures with grating couplers[J]. Opto-Electronics Review, 2016, 15(3): 168-178.

    [19] Iqbal T, Afsheen S. Extraordinary optical transmission: Role of the slit width in 1D metallic grating on higher refractive index substrate[J]. Current Applied Physics, 2016, 1(4): 453-458.

    KONG Lingchao, LIU Yu. Sensing characteristics of surface plasmon resonance based on embedded gold nanoparticle array[J]. Chinese Journal of Quantum Electronics, 2017, 34(2): 241
    Download Citation