• Chinese Journal of Lasers
  • Vol. 51, Issue 21, 2107108 (2024)
Xinjuan Liu, Xu Han, and Erxi Fang*
Author Affiliations
  • School of Electronic and Information, Soochow University, Suzhou 215006, Jiangsu , China
  • show less
    DOI: 10.3788/CJL241041 Cite this Article Set citation alerts
    Xinjuan Liu, Xu Han, Erxi Fang. Fundus Microvascular Image Segmentation Method Based on Parallel U‐Net Model[J]. Chinese Journal of Lasers, 2024, 51(21): 2107108 Copy Citation Text show less
    References

    [1] Zhou J Q, Xu L, Wang S. The relationship between retinal vascular changes and diabetes, cardio-cerebrovascular diseases[J]. International Review of Ophthalmology, 34, 289-294(2010).

    [2] Wang H J, Su A Y, Bi X J. Influence of hypertension on retinopathy in patients with diabetes[J]. Contemporary Medicine, 21, 49-50(2015).

    [3] Huo Q Q, Zhang J Y, Yang K L et al. Distribution characteristics of the retinal capillary non-perfusion area at different layers and zones in patients with proliferative diabetic retinopathy based on full-range swept-source optical coherence tomography angiography[J]. Recent Advances in Ophthalmology, 43, 472-475(2023).

    [4] Agurto C, Joshi V, Nemeth S et al. Detection of hypertensive retinopathy using vessel measurements and textural features[C], 2014, 5406-5409(2014).

    [5] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C], 3431-3440(2015).

    [6] Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation[M]. Medical image computing and computer-assisted intervention‒MICCAI 2015, 9351, 234-241(2015).

    [7] Zhang S H, Fu H Z, Yan Y G et al. Attention guided network for retinal image segmentation[M]. Medical image computing and computer assisted intervention‒MICCAI 2019, 11764, 797-805(2019).

    [8] Gu Z W, Cheng J, Fu H Z et al. CE-Net: context encoder network for 2D medical image segmentation[J]. IEEE Transactions on Medical Imaging, 38, 2281-2292(2019).

    [9] Mou L, Chen L, Cheng J et al. Dense dilated network with probability regularized walk for vessel detection[J]. IEEE Transactions on Medical Imaging, 39, 1392-1403(2020).

    [10] Yin P S, Yuan R, Cheng Y M et al. Deep guidance network for biomedical image segmentation[J]. IEEE Access, 8, 116106-116116(2020).

    [11] Guo C L, Szemenyei M, Yi Y G et al. SA-UNet: spatial attention U-Net for retinal vessel segmentation[C], 1236-1242(2021).

    [12] Yuan Y C, Zhang L, Wang L T et al. Multi-level attention network for retinal vessel segmentation[J]. IEEE Journal of Biomedical and Health Informatics, 26, 312-323(2022).

    [13] Zhao F, Zhong B B, Liu H Q. Multi-scale residual U-Net fundus blood vessel segmentation based on attention mechanism[J]. Laser & Optoelectronics Progress, 59, 1810002(2022).

    [14] Mao M Y, Lin J W, Liu S L. Topological coherence preserving retinal vessel segmentation[C], 146-150(2023).

    [15] Zhang L, Wu C, Fan X Y et al. Retinal vessel segmentation via self-adaptive compensation network[J]. Acta Optica Sinica, 43, 1418001(2023).

    [16] Li C Y, Li Z G, Liu W K. TDCAU-Net: retinal vessel segmentation using transformer dilated convolutional attention-based U-Net method[J]. Physics in Medicine & Biology, 69, 015003(2024).

    [17] Staal J, Abramoff M D, Niemeijer M et al. Ridge-based vessel segmentation in color images of the retina[J]. IEEE Transactions on Medical Imaging, 23, 501-509(2004).

    [18] Owen C G, Rudnicka A R, Mullen R et al. Measuring retinal vessel tortuosity in 10-year-old children: validation of the computer-assisted image analysis of the retina (CAIAR) program[J]. Investigative Ophthalmology & Visual Science, 50, 2004-2010(2009).

    [19] Hoover A, Kouznetsova V, Goldbaum M. Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response[J]. IEEE Transactions on Medical Imaging, 19, 203-210(2000).

    [20] Yan Z Q, Yang X, Cheng K T. A three-stage deep learning model for accurate retinal vessel segmentation[J]. IEEE Journal of Biomedical and Health Informatics, 23, 1427-1436(2019).

    [21] Mou L, Zhao Y T, Fu H Z et al. CS2-Net: deep learning segmentation of curvilinear structures in medical imaging[J]. Medical Image Analysis, 67, 101874(2021).

    [22] Wu Y C, Xia Y, Song Y et al. Vessel-Net: retinal vessel segmentation under multi-path supervision[M]. Medical image computing and computer assisted intervention‒MICCAI 2019, 11764, 264-272(2019).

    [23] Alvarado-Carrillo D E, Dalmau-Cedeño O S. Width attention based convolutional neural network for retinal vessel segmentation[J]. Expert Systems with Applications, 209, 118313(2022).

    [24] Yan Z Q, Yang X, Cheng K T. Joint segment-level and pixel-wise losses for deep learning based retinal vessel segmentation[J]. IEEE Transactions on Biomedical Engineering, 65, 1912-1923(2018).

    [25] Islam M T, Khan H A, Naveed K et al. LUVS-Net: a lightweight U-Net vessel segmentor for retinal vasculature detection in fundus images[J]. Electronics, 12, 1786(2023).

    Xinjuan Liu, Xu Han, Erxi Fang. Fundus Microvascular Image Segmentation Method Based on Parallel U‐Net Model[J]. Chinese Journal of Lasers, 2024, 51(21): 2107108
    Download Citation