• Chinese Journal of Lasers
  • Vol. 51, Issue 21, 2107108 (2024)
Xinjuan Liu, Xu Han, and Erxi Fang*
Author Affiliations
  • School of Electronic and Information, Soochow University, Suzhou 215006, Jiangsu , China
  • show less
    DOI: 10.3788/CJL241041 Cite this Article Set citation alerts
    Xinjuan Liu, Xu Han, Erxi Fang. Fundus Microvascular Image Segmentation Method Based on Parallel U‐Net Model[J]. Chinese Journal of Lasers, 2024, 51(21): 2107108 Copy Citation Text show less
    Overall network structure of MPU-Net
    Fig. 1. Overall network structure of MPU-Net
    Fundus vascular and microvascular labels. (a) Ground truth; (b) microvascular label
    Fig. 2. Fundus vascular and microvascular labels. (a) Ground truth; (b) microvascular label
    Example of a morphological structure operator
    Fig. 3. Example of a morphological structure operator
    Schematic diagram of the multi-scale feature mixing and fusion module (MSF)
    Fig. 4. Schematic diagram of the multi-scale feature mixing and fusion module (MSF)
    Vascular segmentation dataset
    Fig. 5. Vascular segmentation dataset
    Heat map examples showing the probabilistic features output by the network before and after adding MSF
    Fig. 6. Heat map examples showing the probabilistic features output by the network before and after adding MSF
    Heat map examples showing the probability features output by the network before and after adding Mic-Net
    Fig. 7. Heat map examples showing the probability features output by the network before and after adding Mic-Net
    Vascular segmentation examples of ablation experiment on the DRIVE test set
    Fig. 8. Vascular segmentation examples of ablation experiment on the DRIVE test set
    Vascular segmentation examples of ablation experiment on the CHASE_DB1 test set
    Fig. 9. Vascular segmentation examples of ablation experiment on the CHASE_DB1 test set
    Vascular segmentation examples of ablation experiment on the STARE test set
    Fig. 10. Vascular segmentation examples of ablation experiment on the STARE test set
    MethodYearAccuracySensitivitySpecificityAUC
    U-Net620150.95310.75370.98200.9755
    Yan et al.2020190.95380.76310.98200.9750
    DG-Net1020200.96040.76140.98370.9846
    CS2-Net2120210.95530.81540.97570.9784
    ACCA-MLA-D-U-Net1220220.95810.80460.98500.9827
    Mao et al.1420230.81050.97850.9812
    TDCAU-Net1620240.95560.81870.97560.9795
    MPU-Net (ours)20240.97100.82430.98530.9889
    Table 1. Experimental results comparison of MPU-Net with existing state-of-the-art methods on the DRIVE test set
    MethodYearAccuracySensitivitySpecificityAUC
    U-Net620150.95780.82280.97010.9772
    Vessel-Net2220190.96610.81320.98140.9860
    CS2-Net2120210.96510.83290.97840.9851
    ACCA-MLA-D-U-Net1220220.96730.84020.98010.9874
    WA-Net2320220.96530.80420.98260.9841
    Mao et al.1420230.82410.98500.9893
    TDCAU-Net1620240.97380.82430.98360.9878
    MPU-Net (ours)20240.97640.85930.98440.9913
    Table 2. Experimental results comparison of MPU-Net with existing state-of-the-art methods on the CHASE_DB1 test set
    MethodYearAccuracySensitivitySpecificityAUC
    Yan et al.2420180.96120.75810.98460.9801
    Yan et al.2020190.96380.77350.98570.9833
    CS2-Net2120210.96700.83960.98130.9875
    ACCA-MLA-D-U-Net1220220.96650.79140.98700.9864
    LUVS-Net2520230.97530.81330.98610.8187
    MPU-Net (ours)20240.97680.78440.99070.9905
    Table 3. Experimental results comparison of MPU-Net with existing state-of-the-art methods on the STARE test set
    DatasetMethodMSFMic-NetAccuracySensitivitySpecificityDice coefficientAUCSen_Mic
    DRIVE1××

    0.9672±

    0.0002

    0.7928±

    0.0073

    0.9842±

    0.0009

    0.8082±0.0008

    0.9816±

    0.0010

    0.6815±

    0.0127

    2×

    0.9708

    ±0.0001

    0.8234

    ±0.0052

    0.9851±

    0.0006

    0.8309±0.0002

    0.9887±

    0.0001

    0.7153±

    0.0066

    3

    0.9710±

    0.0001

    0.8243±

    0.0012

    0.9853±

    0.0002

    0.8314±0.0002

    0.9889±

    0.0001

    0.7199±

    0.0013

    DatasetMethodMSFMic-NetAccuracySensitivitySpecificityDice coefficientAUCSen_Mic
    CHASE_DB11××

    0.9757±

    0.0001

    0.8296±

    0.0037

    0.9855±

    0.0003

    0.8112±0.0006

    0.9878±

    0.0006

    0.7528±

    0.0050

    2×

    0.9762±

    0.0002

    0.8563±

    0.0045

    0.9843±

    0.0005

    0.8193±0.0042

    0.9912±

    0.0001

    0.7833±

    0.0064

    3

    0.9764±

    0.0002

    0.8593±

    0.0034

    0.9844±

    0.0005

    0.8212±0.0032

    0.9913±

    0.0001

    0.7874±

    0.0052

    DatasetMethodMSFMic-NetAccuracySensitivitySpecificityDice coefficientAUCSen_Mic
    STARE1××

    0.9766±

    0.0005

    0.7413±

    0.0100

    0.9931±

    0.0003

    0.7979±0.0056

    0.9831±

    0.0013

    0.6066±

    0.0184

    2×

    0.9764±

    0.0003

    0.7726±

    0.0081

    0.9911±

    0.0005

    0.8031±0.0030

    0.9829±

    0.0011

    0.6345±

    0.0090

    3

    0.9768±

    0.0002

    0.7844±

    0.0059

    0.9907±

    0.0005

    0.8089±0.0016

    0.9905±

    0.0005

    0.6388±

    0.0042

    Table 4. Comparison in ablation experimental results (mean ± std)
    Xinjuan Liu, Xu Han, Erxi Fang. Fundus Microvascular Image Segmentation Method Based on Parallel U‐Net Model[J]. Chinese Journal of Lasers, 2024, 51(21): 2107108
    Download Citation