• Laser & Optoelectronics Progress
  • Vol. 49, Issue 4, 40001 (2012)
Cui Yun1、*, Yi Kui1, Shen Zicai2, and Shao Jianda1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/lop49.040001 Cite this Article Set citation alerts
    Cui Yun, Yi Kui, Shen Zicai, Shao Jianda. Research Progress of Damage Performances for Laser Coatings and Substrates Used in Space[J]. Laser & Optoelectronics Progress, 2012, 49(4): 40001 Copy Citation Text show less
    References

    [1] Anthony W. Yu, Steven X. Li. Spaceborne laser transmitters for remote sensing applications[C]. SPIE, 2010, 7808: 780817

    [2] Narasimha S. Prasada. High energy, single-mode, all-solid-state and tunable UV laser transmitter[C]. SPIE, 2006, 6214: 62140T

    [3] Young K. Bae. Propellantless precision formation flying with photonic laser thrusters for large space telescopes[C]. SPIE, 2009, 7436: 74360F

    [4] Ge Changchun. Space solar power station and its key materials[J]. Spacecraft Environment Engineering, 2010, 27(1): 13~17

    [5] W. Riede, P. Allenspacher. Laser damage test bench for space optics[C]. Proceedings of the 5th International Conference on Space Optics, 2004. 839~843

    [6] D. Jolly. Manufacturing experience in reducing environmental induced failures of laser diodes[C]. SPIE, 1996, 2714: 679~682

    [7] Ye Zonghai. Space environment studies for the SZ-4 spacecraft[J]. Physics, 2004, 33(1): 40~48

    [8] W. Riede, P. Allenspacher, L. Jensen et al.. Analysis of the air-vacuum effect in dielectric coatings[C]. SPIE, 2008, 7132: 71320F

    [9] Ling Xiulan. Nanosecond Pulse Laser Induced Damage of Optical Coatings in Vacuum Environments[D]. Shanghai: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 2010. 46~58

    [10] Feng Weiquan. Evaluation and validation of space environmental applicability of spacecraft materials[J]. Spacecraft Environment Engineering, 2010, 27(2): 139~142

    [11] K. Mikami, S. Motokoshi, M. Fujita et al.. Laser-induced damage thresholds in silica glasses at different temperature[C]. SPIE, 2009, 7504: 75041R

    [12] B. Bussière, O. Utéza. Laser induced damage of sapphire and titanium doped sapphire crystals under femtosecond to nanosecond laser irradiation[C]. SPIE, 2009, 7504:75040N

    [13] Liu Yuming. Studies on space ultraviolet environment and its effects on spacecraft materials[J]. Spacecraft Environment Engineering, 2007, 26(6): 139~143

    [14] Wang Yingjian, Wang Yongmei. Effects of solar UV radiation on space optical films[J]. Chin. J. Space Science, 2009, 29(2): 222~228

    [15] Hu Jie. Study of the Coloration Effect of Four Optical-Filming Powders[D]. Harbin: Harbin Institute of Technology, 2009. 24~66

    [16] Zhou Zhongxiang, Wang Hongli, Shen Yanqing et al.. Study on the optical property of quartz glass and Al film reflector under charged particles irradiation[J]. Acta Physica Sinica, 2008, 57(1): 592~599

    [17] Li Danming, Tian Kai, He Deyan. Study for optical performance degradation of ZnO thermal control coatings under electronic irradiation based on monolayer model[J]. J. Functional Materials, 2010, 41(6): 1001~1004

    [18] Wolfgang Riede, Paul Allenspacher, Helmut Schrder et al.. Aspects of laser optics qualification for space applications[C]. SPIE, 2009, 7504: 75040T

    [19] Alessandra Ciapponi, Wolfgang Riede, Georgios Tzeremes. Non-linear optical frequency conversion crystals for space applications[C]. SPIE, 2011, 7912: 791205

    [20] Otto K. Husmann, Karl Kerner. Solar-radiation-resistance improvement of second-surface mirrors and optical solar reflectors by deposition of interference filters[J]. J. Vac. Sci. Technol., 1977, 14(1): 200~204

    [21] Alan F. Stewart, Miria Finckenor. Optical coatings and surfaces in space: MISSE[C]. SPIE, 2007, 6403: 64030S

    [22] H. Schrder, W. Riedea, E. Reinhold et al.. In situ observation of UV laser-induced deposit formation by fluorescence measurement[C]. SPIE, 2007, 6403: 64031K

    [23] Kenneth W. Browall. Photocatalytic Coatings on Optical Solar Reflectors to Decompose Organic Contaminants[P]. US Patent 6,290,180, 2001-09-18

    [24] Ronald Pirich, John Weir, Dennis Leyble. The effects of ionizing radiation, temperature and space contamination effects on photonic coatings[C]. SPIE, 2009, 7467: 746704

    [25] Danielle V. Margiottaa. The lotus coating for space exploration-a dust mitigation tool[C]. SPIE, 2010, 7794: 77940I

    CLP Journals

    [1] Fan Xingnuo, Jang Youen, Li Xuechun. Technology for Rapid Detection of Laser-Induced Damage on Optical Components Using Line-Scan Phase Differential Imaging[J]. Chinese Journal of Lasers, 2013, 40(9): 908005

    Cui Yun, Yi Kui, Shen Zicai, Shao Jianda. Research Progress of Damage Performances for Laser Coatings and Substrates Used in Space[J]. Laser & Optoelectronics Progress, 2012, 49(4): 40001
    Download Citation