• Photonics Research
  • Vol. 11, Issue 7, 1175 (2023)
Kai-Chi Chang1、†,*, Xiang Cheng1、2、†, Murat Can Sarihan1, and Chee Wei Wong1、3
Author Affiliations
  • 1Fang Lu Mesoscopic Optics and Quantum Electronics Laboratory, Department of Electrical and Computer Engineering, University of California, Los Angeles, California 90095, USA
  • 2e-mail: chengxiang@ucla.edu
  • 3e-mail: cheewei.wong@ucla.edu
  • show less
    DOI: 10.1364/PRJ.483570 Cite this Article Set citation alerts
    Kai-Chi Chang, Xiang Cheng, Murat Can Sarihan, Chee Wei Wong. Towards optimum Franson interference recurrence in mode-locked singly-filtered biphoton frequency combs[J]. Photonics Research, 2023, 11(7): 1175 Copy Citation Text show less
    References

    [1] Y. J. Lu, R. L. Campbell, Z. Y. Ou. Mode-locked two-photon states. Phys. Rev. Lett., 91, 163602(2003).

    [2] Z. Xie, T. Zhong, S. Shrestha, X. Xu, J. Liang, Y.-X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. C. Wong, C. W. Wong. Harnessing high-dimensional hyperentanglement through a biphoton frequency comb. Nat. Photonics, 9, 536-542(2015).

    [3] K.-C. Chang, X. Cheng, M. C. Sarihan, A. K. Vinoid, Y. S. Lee, T. Zhong, Y.-X. Gong, Z. Xie, J. H. Shapiro, F. N. C. Wong, C. W. Wong. 648 Hilbert space dimensionality in a biphoton frequency comb: entanglement of formation and Schmidt mode decomposition. npj Quantum Inf., 7, 48(2021).

    [4] K.-C. Chang, X. Cheng, M. C. Sarihan, F. N. C. Wong, J. H. Shapiro, C. W. Wong. High-dimensional energy-time entanglement distribution via a biphoton frequency comb. Conference on Lasers and Electro-Optics, FF1A.7(2021).

    [5] K.-C. Chang, X. Cheng, M. C. Sarihan, W. Wang, F. N. C. Wong, J. H. Shapiro, C. W. Wong. Mode-locked phase coherent singly-resonant biphoton frequency comb. Conference on Lasers and Electro-Optics, FTh5O.4.70(2022).

    [6] J. H. Shapiro. Coincidence dips and revivals from a Type-II optical parametric amplifier. Conference on Nonlinear Optics, FC7-1(2002).

    [7] C. E. Kuklewicz, F. N. C. Wong, J. H. Shapiro. Time-bin-modulated biphotons from cavity-enhanced down-conversion. Phys. Rev. Lett., 97, 223601(2006).

    [8] M. Scholz, F. Wolfgramm, U. Herzog, O. Benson. Narrow-band single photons from a single-resonant optical parametric oscillator far below threshold. Appl. Phys. Lett., 91, 191104(2007).

    [9] M. Scholz, L. Koch, O. Benson. Statistics of narrow-band single photons for quantum memories generated by ultrabright cavity-enhanced parametric down-conversion. Phys. Rev. Lett., 102, 063603(2009).

    [10] F. Wolfgramm, Y. A. de Icaza Astiz, F. A. Beduini, A. Ceré, M. W. Mitchell. Atom-resonant heralded single photons by interaction-free measurement. Phys. Rev. Lett., 106, 053602(2011).

    [11] D. Rieländer, K. Kutluer, P. M. Ledingham, M. Gündoğan, J. Fekete, M. Mazzera, H. De Riedmatten. Quantum storage of heralded single photons in a praseodymium-doped crystal. Phys. Rev. Lett., 112, 040504(2014).

    [12] A. Seri, A. Lenhard, D. Rieländer, M. Gündoğan, P. M. Ledingham, M. Mazzera, H. De Riedmatten. Quantum correlations between single telecom photons and a multimode on-demand solid-state quantum memory. Phys. Rev. X, 7, 021028(2017).

    [13] A. Seri, D. Lago-Rivera, A. Lenhard, G. Corrielli, R. Osellame, M. Mazzera, H. de Riedmatten. Quantum storage of frequency-multiplexed heralded single photons. Phys. Rev. Lett., 123, 080502(2019).

    [14] R. Ikuta, R. Tani, M. Ishizaki, S. Miki, M. Yabuno, H. Terai, N. Imoto, T. Yamamoto. Frequency-multiplexed photon pairs over 1000 modes from a quadratic nonlinear optical waveguide resonator with a singly resonant configuration. Phys. Rev. Lett., 123, 193603(2019).

    [15] D. Lago-Rivera, S. Grandi, J. V. Rakonjac, A. Seri, H. de Riedmatten. Telecom-heralded entanglement between multimode solid-state quantum memories. Nature, 594, 37-40(2021).

    [16] T. Yamazaki, R. Ikuta, T. Kobayashi, S. Miki, F. China, H. Terai, N. Imoto, T. Yamamoto. Massive-mode polarization entangled biphoton frequency comb. Sci. Rep., 12, 8964(2022).

    [17] C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, R. Morandotti. Generation of multiphoton entangled quantum states by means of integrated frequency combs. Science, 351, 1176-1180(2016).

    [18] J. A. Jaramillo-Villegas, P. Imany, O. D. Odele, D. E. Leaird, Z.-Y. Ou, M. Qi, A. M. Weiner. Persistent energy-time entanglement covering multiple resonances of an on-chip biphoton frequency comb. Optica, 4, 655-663(2017).

    [19] M. Kues, C. Reimer, P. Roztocki, L. Romero Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, R. Morandotti. On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature, 546, 622-626(2017).

    [20] H.-H. Lu, J. M. Lukens, N. A. Peters, B. P. Williams, A. M. Weiner, P. Lougovski. Quantum interference and correlation control of frequency-bin qubits. Optica, 5, 1455(2018).

    [21] P. Imany, N. B. Lingaraju, M. S. Alshaykh, D. E. Leaird, A. M. Weiner. Probing quantum walks through coherent control of high-dimensionally entangled photons. Sci. Adv., 6, eaba8066(2020).

    [22] R. H. Brown, R. Q. Twiss. A test of a new type of stellar interferometer on Sirius,”. Nature, 178, 1046-1048(1956).

    [23] N. B. Lingaraju, H.-H. Lu, S. Seshadri, P. Imany, D. E. Leaird, J. M. Lukens, A. M. Weiner. Quantum frequency combs and Hong-Ou-Mandel interferometry: the role of spectral phase coherence. Opt. Express, 27, 38683-38697(2019).

    [24] J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløøwe, J. L. O’Brien, A. Laing, M. G. Thompson. Multidimensional quantum entanglement with large-scale integrated optics. Science, 360, 285-291(2018).

    [25] C. Reimer, S. Sciara, P. Roztocki, M. Islam, L. R. Cortés, Y. Zhang, B. Fischer, S. Loranger, R. Kashyap, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, W. J. Munro, J. Azaña, M. Kues, R. Morandotti. High-dimensional one-way quantum processing implemented on d-level cluster states. Nat. Phys., 15, 148-153(2018).

    [26] D. Llewellyn, Y. Ding, I. I. Faruque, S. Paesani, D. Bacco, R. Santagati, Y.-J. Qian, Y. Li, Y.-F. Xiao, M. Huber, M. Malik, G. F. Sinclair, X. Zhou, K. Rottwitt, J. L. O’Brien, J. G. Rarity, Q. Gong, L. K. Oxenlowe, J. Wang, M. G. Thompson. Chip-to-chip quantum teleportation and multi-photon entanglement in silicon. Nat. Phys., 16, 148-153(2020).

    [27] J. Wang, F. Sciarrino, A. Laing, M. G. Thompson. Integrated photonic quantum technologies. Nat. Photonics, 14, 273-284(2020).

    [28] I. Ali Khan, C. J. Broadbent, J. C. Howell. Large-alphabet quantum key distribution using energy-time entangled bipartite states. Phys. Rev. Lett., 98, 060503(2007).

    [29] T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. D. Shaw, Z. Zhang, L. Wang, D. Englund, G. W. Wornell, J. H. Shapiro, F. N. C. Wong. Photon-efficient quantum key distribution using time-energy entanglement with high-dimensional encoding. New J. Phys., 17, 022002(2015).

    [30] N. T. Islam, C. C. W. Lim, C. Cahall, J. Kim, D. J. Gauthier. Provably secure and high-rate quantum key distribution with time-bin qudits. Sci. Adv., 3, e1701491(2017).

    [31] C. Lee, D. Bunandar, Z. Zhang, G. R. Steinbrecher, P. B. Dixon, F. N. C. Wong, J. H. Shapiro, S. A. Hamilton, D. Englund. Large-alphabet encoding for higher-rate quantum key distribution. Opt. Express, 27, 17539-17549(2019).

    [32] I. Vagniluca, B. Da Lio, D. Rusca, D. Cozzolino, Y. Ding, H. Zbinden, A. Zavatta, L. K. Oxenløwe, D. Bacco. Efficient time-bin encoding for practical high-dimensional quantum key distribution. Phys. Rev. Appl., 14, 014051(2020).

    [33] V. Tamma, S. Laibacher. Multiboson correlation interferometry with arbitrary single-photon pure states. Phys. Rev. Lett., 114, 243601(2015).

    [34] X.-J. Wang, B. Jing, P.-F. Sun, C.-W. Yang, Y. Yu, V. Tamma, X.-H. Bao, J.-W. Pan. Experimental time-resolved interference with multiple photons of different colors. Phys. Rev. Lett., 121, 080501(2018).

    [35] S. Laibacher, V. Tamma. From the physics to the computational complexity of multiboson correlation interference. Phys. Rev. Lett., 115, 243605(2015).

    [36] A. P. Lund, M. J. Bremner, T. C. Ralph. Quantum sampling problems, BosonSampling and quantum supremacy. npj Quantum Inf., 3, 15(2017).

    [37] J. D. Franson. Bell inequality for position and time. Phys. Rev. Lett., 62, 2205-2208(1989).

    [38] F. Vedovato, C. Agnesi, M. Tomasin, M. Avesani, J.-Å. Larsson, G. Vallone, P. Villoresi. Postselection-loophole-free Bell violation with genuine time-bin entanglement. Phys. Rev. Lett., 121, 190401(2018).

    [39] I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, N. Gisin. Distribution of time-bin entangled qubits over 50 km of optical fiber. Phys. Rev. Lett., 93, 180502(2004).

    [40] T. Honjo, H. Takesue, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, K. Inoue. Long-distance distribution of time-bin entangled photon pairs over 100 km using frequency up-conversion detectors. Opt. Express, 15, 13957-13964(2007).

    [41] J. F. Dynes, H. Takesue, Z. L. Yuan, A. W. Sharpe, K. Harada, T. Honjo, H. Kamada, O. Tadanaga, Y. Nishida, M. Asobe, A. J. Shields. Efficient entanglement distribution over 200 kilometers. Opt. Express, 17, 11440-11449(2009).

    [42] T. Inagaki, N. Matsuda, O. Tadanaga, M. Asobe, H. Takesue. Entanglement distribution over 300 km of fiber. Opt. Express, 21, 23241-23249(2013).

    [43] D. Aktas, B. Fedrici, F. Kaiser, T. Lunghi, L. Labonté, S. Tanzilli. Entanglement distribution over 150 km in wavelength division multiplexed channels for quantum cryptography. Laser Photon. Rev., 10, 451-457(2016).

    [44] K. Niizeki, D. Yoshida, K. Ito, I. Nakamura, N. Takei, K. Okamura, M.-Y. Zheng, X.-P. Xie, T. Horikiri. Two-photon comb with wavelength conversion and 20-km distribution for quantum communication. Commun. Phys., 3, 138(2020).

    [45] Z. Zhang, J. Mower, D. Englund, F. N. C. Wong, J. H. Shapiro. Unconditional security of time-energy entanglement quantum key distribution using dual-basis interferometry. Phys. Rev. Lett., 112, 120506(2014).

    [46] F. Xu, X. Ma, Q. Zhang, H.-K. Lo, J.-W. Pan. Secure quantum key distribution with realistic devices. Rev. Mod. Phys., 92, 025002(2020).

    [47] N. Sangouard, C. Simon, H. de Riedmatten, N. Gisin. Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys., 83, 33-80(2011).

    [48] E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussiéres, M. George, R. Ricken, W. Sohler, W. Tittel. Broadband waveguide quantum memory for entangled photons. Nature, 469, 512-515(2011).

    [49] C. Clausen, I. Usmani, F. Bussiéres, N. Sangouard, M. Afzelius, H. de Riedmatten, N. Gisin. Quantum storage of photonic entanglement in a crystal. Nature, 469, 508-511(2011).

    [50] E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, W. Tittel. Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre. Nat. Photonics, 9, 83-87(2015).

    [51] E. Saglamyurek, M. G. Puigibert, Q. Zhou, L. Giner, F. Marsili, V. B. Verma, S. W. Nam, L. Oesterling, D. Nippa, D. Oblak, W. Tittel. A multiplexed light-matter interface for fibre-based quantum networks. Nat. Commun., 7, 11202(2016).

    [52] A. Tiranov, P. C. Strassmann, J. Lavoie, N. Brunner, M. Huber, V. B. Verma, S. W. Nam, R. P. Mirin, A. E. Lita, F. Marsili, M. Afzelius, F. Bussières, N. Gisin. Temporal multimode storage of entangled photon pairs. Phys. Rev. Lett., 117, 240506(2016).

    [53] F. Steinlechner, S. Ecker, M. Fink, B. Liu, J. Bavaresco, M. Huber, T. Scheidl, R. Ursin. Distribution of high-dimensional entanglement via an intra-city free-space link. Nat. Commun., 8, 15971(2017).

    [54] T. Ikuta, H. Takesue. Four-dimensional entanglement distribution over 100 km. Sci. Rep., 8, 7(2018).

    [55] T. Zhong, F. N. C. Wong, T. D. Roberts, P. Battle. High performance photon-pair source based on a fiber-coupled periodically poled KTiOPO4 waveguide. Opt. Express, 17, 12019-12030(2009).

    [56] B. A. Korzh, Q.-Y. Zhao, J. P. Allmaras, S. Frasca, T. M. Autry, E. A. Bersin, A. D. Beyer, R. M. Briggs, B. Bumble, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, A. E. Lita, F. Marsili, G. Moody, C. Peña, E. Ramirez, J. D. Rezac, N. Sinclair, M. J. Stevens, A. E. Velasco, V. B. Verma, E. E. Wollman, S. Xie, D. Zhu, P. D. Hale, M. Spiropulu, K. L. Silverman, R. P. Mirin, S. W. Nam, A. G. Kozorezov, M. D. Shaw, K. K. Berggren. Demonstration of sub-3 ps temporal resolution with a superconducting nanowire single-photon detector. Nat. Photonics, 14, 250-255(2020).

    [57] J. G. Rarity, P. R. Tapster. Experimental violation of Bell’s inequality based on phase and momentum. Phys. Rev. Lett., 64, 2495-2498(1990).

    [58] Z. Y. Ou, Y. J. Lu. Cavity enhanced spontaneous parametric down-conversion for the prolongation of correlation time between conjugate photons. Phys. Rev. Lett., 83, 2556-2559(1999).

    [59] C. E. Kuklewicz, E. Keskiner, F. N. C. Wong, J. H. Shapiro. A high-flux entanglement source based on a doubly resonant optical parametric amplifier. J. Opt. B Quantum Semiclass. Opt., 4, S162(2002).

    [60] A. Lenhard, M. Bock, C. Becher, S. Kucera, J. Brito, P. Eich, P. Müller, J. Eschner. Telecom-heralded single-photon absorption by a single atom. Phys. Rev. A, 92, 063827(2015).

    [61] O. Slattery, L. Ma, P. Kuo, X. Tang. Narrow-linewidth source of greatly non-degenerate photon pairs for quantum repeaters from a short singly resonant cavity. Appl. Phys. B, 121, 413-419(2015).

    [62] M. Rambach, A. Nikolova, T. J. Weinhold, A. G. White. Sub-megahertz linewidth single photon source. APL Photon., 1, 096101(2016).

    [63] O. T. Slattery, L. Ma, K. Zong, X. Tang. Background and review of cavity-enhanced spontaneous parametric down-conversion. J. Res. Natl. Inst. Stan. Technol., 124, 124019(2019).

    [64] E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, W. Sohler. Waveguide-based OPO source of entangled photon pairs. New J. Phys., 11, 113042(2009).

    [65] C.-S. Chuu, G. Y. Yin, S. E. Harris. A miniature ultrabright source of temporally long, narrowband biphotons. Appl. Phys. Lett., 101, 051108(2012).

    [66] J. Fekete, D. Rieländer, M. Cristiani, H. de Riedmatten. Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks. Phys. Rev. Lett., 110, 220502(2013).

    [67] A. Ahlrichs, O. Benson. Bright source of indistinguishable photons based on cavity-enhanced parametric down-conversion utilizing the cluster effect. Appl. Phys. Lett., 108, 021111(2016).

    [68] P.-J. Tsai, Y.-C. Chen. Ultrabright, narrow-band photon-pair source for atomic quantum memories. Quantum Sci. Technol., 3, 034005(2018).

    [69] A. Martin, T. Guerreiro, A. Tiranov, S. Designolle, F. Fröwis, N. Brunner, M. Huber, N. Gisin. Quantifying photonic high-dimensional entanglement. Phys. Rev. Lett., 118, 110501(2017).

    Kai-Chi Chang, Xiang Cheng, Murat Can Sarihan, Chee Wei Wong. Towards optimum Franson interference recurrence in mode-locked singly-filtered biphoton frequency combs[J]. Photonics Research, 2023, 11(7): 1175
    Download Citation