• Infrared and Laser Engineering
  • Vol. 44, Issue 7, 2105 (2015)
Guan Yunxia1、*, Chen Lijia1, Chen Ping2, and Niu Lianbin1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: Cite this Article
    Guan Yunxia, Chen Lijia, Chen Ping, Niu Lianbin. Organic light-emitting device based on LSMO[J]. Infrared and Laser Engineering, 2015, 44(7): 2105 Copy Citation Text show less
    References

    [1] Wu X M, Bi W T, Hua Y L, et al. C60/N,N′-bis(1-naphthyl)-N,N′-diphenyl-1,1′-biphenyl-4,4′-diamine:MoO3 as the interconnection layer for high efficient tandem blue fluorescent organic light-emitting diodes[J]. Appl Phys Lett, 2013, 102 (24): 243302.

    [2] Chen W B, Li X. Truncated cone model for OLED external quantum efficiency enhancement[J]. Infrared and Laser Engineering, 2007, 36(5): 718-720. (in Chinese)

    [3] Chang H W, Lee J H, Hofmann S, et al. Nano-particle based scattering layers for optical efficiency enhancement of organic light-emitting diodes and organic solar cells[J]. J Appl Phys, 2013, 113 (20): 204502.

    [4] Zhang W W, Bai Y L, Ouyang X, et al. Intelligent streak camera with OLED display[J]. Infrared and Laser Engineering, 2012, 41(2): 484-488. (in Chinese)

    [5] Niu L B, Guan Y X, Kong C Y. Organic light-emitting devices with thin Nano-ZnO film [J]. Chin J Lumin, 2010, 31(2): 162-165 (in Chinese).

    [6] Zhang W W, He H T, Dong J. The design of multi-function OLED power supply driver[J]. Infrared and Laser Engineering, 2014, 43(5): 1883-1888. (in Chinese)

    [7] Jin W P, Jong T L, Jong S O, et al. Electron-injecting properties of Rb2CO3-doped Alq3 thin films in organic light-emitting [J]. J Vac Sci Technol A, 2013, 31(3): 031101.

    [8] Brown A R, Pichler K, Greenham N C, et al. Optical spectroscopy of triplet excitons and charged excitations in poly(p-phenylenevinylene) light-emitting diodes [J]. Chem Phys Lett, 1993, 210(1): 61-63.

    [9] Baldo M A O, Brien D F, Thompson M E, et al. Excitonic singlet-triplet ratio in a semiconducting organic thin film[J]. Phys Rev B, 1999, 60(20): 14422-144428.

    [10] Hu B, Wu Y. Effects of ferromagnetic nanowires on singlet and triplet exciton fractions in fluorescent and phosphorescent organic semiconductors[J]. Appl Phys Lett, 2006, 88(2): 022114.

    [11] Dediu V, Murgia M, Matacotta F C, et al. Room temperature spin polarized injection in organic semiconductor[J]. Solid State Commun, 2002, 122(3): 181-184.

    [12] Qin W, Zhang Y B, Xie S J. Study on the temperature effect of magnetoresistance in organic device Co/Alq3/La1-xSrxMnO3(LSMO)[J]. Acta Phys Sin, 2010, 59(5): 3494-3498. (in Chinese)

    [13] Yu Z G, Berding M A, Krishnamurthy S. Spin transport in organics and organic spin devices[J]. IEE Proc-Circuits Devices Syst, 2005, 152(4): 334-339.

    [14] Davis A H, Bussmann K. Organic luminescent devices and magnetoelectronics[J]. J Appl Phys, 2003, 93(10): 7358-7360.

    [15] Yunus M, Ruden P P, Smith D L. Spin injection effects on exciton formation in organic semiconductors[J]. Appl Phys Lett, 2008, 93(12): 123312.

    CLP Journals

    [1] Zhang Wenwen, Li Ge, Lei Xiaoli, Yan Xuewen, Chai Baoyu. Analysis of thermal characteristics of organic light emitting device[J]. Infrared and Laser Engineering, 2018, 47(7): 720001

    Guan Yunxia, Chen Lijia, Chen Ping, Niu Lianbin. Organic light-emitting device based on LSMO[J]. Infrared and Laser Engineering, 2015, 44(7): 2105
    Download Citation