• Advanced Photonics
  • Vol. 1, Issue 3, 036002 (2019)
Meng Lyu1、2, Hao Wang1、2, Guowei Li1、2, Shanshan Zheng1、2, and Guohai Situ1、2、*
Author Affiliations
  • 1Chinese Academy of Sciences, Shanghai Institute of Optics and Fine Mechanics, Shanghai, China
  • 2University of Chinese Academy of Sciences, Center for Materials Science and Optoelectronics Engineering, Beijing, China
  • show less
    DOI: 10.1117/1.AP.1.3.036002 Cite this Article Set citation alerts
    Meng Lyu, Hao Wang, Guowei Li, Shanshan Zheng, Guohai Situ. Learning-based lensless imaging through optically thick scattering media[J]. Advanced Photonics, 2019, 1(3): 036002 Copy Citation Text show less
    References

    [1] J. W. Goodman. Introduction to Fourier Optics(2005).

    [2] V. Ntziachristos. Going deeper than microscopy: the optical imaging frontier in biology. Nat. Methods, 7, 603-614(2010).

    [3] A. Ishimaru. Wave Propagation and Scattering in Random Media(1978).

    [4] J. Beckers. Adaptive optics for astronomy: principles, performance, and applications. Annu. Rev. Astron. Astrophys., 31, 13-62(1993).

    [5] S. Rotter, S. Gigan. Light fields in complex media: mesoscopic scattering meets wave control. Rev. Mod. Phys., 89, 015005(2017).

    [6] J. W. Goodman et al. Wavefront reconstruction imaging through random media. Appl. Phys. Lett., 8, 311-313(1966).

    [7] Z. Yaqoob et al. Optical phase conjugation for turbidity suppression in biological samples. Nat. Photonics, 2, 110-115(2008).

    [8] Y. Zhang et al. Application of short-coherence lensless Fourier-transform digital holography in imaging through diffusive medium. Opt. Commun., 286, 56-59(2013).

    [9] A. K. Singh et al. Exploiting scattering media for exploring 3D objects. Light Sci. Appl., 6, e16219(2017).

    [10] I. M. Vellekoop, A. Mosk. Focusing coherent light through opaque strongly scattering media. Opt. Lett., 32, 2309-2311(2007).

    [11] A. P. Mosk et al. Controlling waves in space and time for imaging and focusing in complex media. Nat. Photonics, 6, 283-292(2012).

    [12] O. Katz, E. Small, Y. Silberberg. Looking around corners and through thin turbid layers in real time with scattered incoherent light. Nat. Photonics, 6, 549-553(2012).

    [13] S. M. Popoff et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett., 104, 100601(2010).

    [14] S. Popoff et al. Image transmission through an opaque material. Nat. Commun., 1, 81(2010).

    [15] M. R. I. Freund, S. Feng. Memory effects in propagation of optical waves through disordered media. Phys. Rev. Lett., 61, 2328-2331(1998).

    [16] J. Bertolotti et al. Non-invasive imaging through opaque scattering layers. Nature, 491, 232-234(2012).

    [17] O. Katz et al. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations. Nat. Photonics, 8, 784-790(2014).

    [18] G. Li et al. Cyphertext-only attack on the double random-phase encryption: experimental demonstration. Opt. Express, 25, 8690-8697(2017).

    [19] W. Yang, G. Li, G. Situ. Imaging through scattering media with the auxiliary of a known reference object. Sci. Rep., 8, 9614(2018).

    [20] S. Schott et al. Characterization of the angular memory effect of scattered light in biological tissues. Opt. Express, 23, 13505-13516(2015).

    [21] G. Li et al. Image transmission through scattering media using ptychographic iterative engine. Appl. Sci., 9, 849(2019).

    [22] I. Goodfellow, Y. Bengio, A. Courville. Deep Learning(2016).

    [23] Y. LeCun, Y. Bengio, G. Hinton. Deep learning. Nature, 521, 436-444(2015).

    [24] R. Horisaki, R. Takagi, J. Tanida. Learning-based imaging through scattering media. Opt. Express, 24, 13738-13743(2016).

    [25] M. Lyu et al. Exploit imaging through opaque wall via deep learning(2017).

    [26] Y. Rivenson et al. Phase recovery and holographic image reconstruction using deep learning in neural networks. Light Sci. Appl., 7, 17141(2018).

    [27] A. Sinha et al. Lensless computational imaging through deep learning. Optica, 4, 1117-1125(2017).

    [28] K. H. Jin, M. T. McCann. Deep convolutional neural network for inverse problems in imaging. IEEE Trans. Image Process., 26, 4509-4522(2017).

    [29] P. Caramazza et al. Neural network identification of people hidden from view with a single-pixel, single-photon detector. Sci. Rep., 8, 11945(2018).

    [30] S. Li et al. Imaging through glass diffusers using densely connected convolutional networks. Optica, 5, 803-813(2018).

    [31] Y. Li, Y. Xue, L. Tian. Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media. Optica, 5, 1181-1190(2018).

    [32] G. Barbastathis, A. Ozcan, G. Situ. On the use of deep learning for computational imaging. Optica(2019).

    [33] M. Lyu et al. Deep-learning-based ghost imaging. Sci. Rep., 7, 17865(2017).

    [34] L. Deng. The MNIST database of handwritten digit images for machine learning research [best of the web]. IEEE Signal Process. Mag., 29, 141-142(2012).

    [35] I. Freund. Looking through walls and around corners. Phys. A, 168, 49-65(1990).

    [36] I. Freund. Image reconstruction through multiple scattering media. Opt. Commun., 86, 216-227(1991).

    [37] K. Hornik, M. Stinchcombe, H. White. Multilayer feedforward networks are universal approximators. Neural Netw., 2, 359-366(1989).

    [38] G. Cybenko. Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst., 2, 303-314(1989).

    [39] V. Nair, G. E. Hinton. Rectified linear units improve restricted Boltzmann machines. Proc. of the 27th Int. Conf. on Machine Learning, 807-814(2010).

    [40] K. Diederik, J. Ba. Adam: a method for stochastic optimization(2014).

    [41] N. Srivastava et al. Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res., 15, 1929-1958(2014).

    [42] C. M. Michail et al. Figure of image quality and information capacity in digital mammography. BioMed Res. Int., 2014, 297-308(2015).

    [43] J. W. Goodman. Statistical Optics(2015).

    [44] R. Michels, F. Foschum, A. Kienle. Optical properties of fat emulsions. Opt. Express, 16, 5907-5925(2008).

    CLP Journals

    [1] Shanshan Zheng, Hao Wang, Shi Dong, Fei Wang, Guohai Situ. Incoherent imaging through highly nonstatic and optically thick turbid media based on neural network[J]. Photonics Research, 2021, 9(5): B220

    [2] Zhenyu Zhou, Jun Xia, Jun Wu, Chenliang Chang, Xi Ye, Shuguang Li, Bintao Du, Hao Zhang, Guodong Tong. Learning-based phase imaging using a low-bit-depth pattern[J]. Photonics Research, 2020, 8(10): 1624

    [3] Xiaomeng Sui, Zehao He, Hao Zhang, Liangcai Cao, Daping Chu, Guofan Jin. Spatiotemporal double-phase hologram for complex-amplitude holographic displays[J]. Chinese Optics Letters, 2020, 18(10): 100901

    [4] Shuo Zhu, Enlai Guo, Jie Gu, Lianfa Bai, Jing Han. Imaging through unknown scattering media based on physics-informed learning[J]. Photonics Research, 2021, 9(5): B210

    [5] Dalong Qi, Shian Zhang, Chengshuai Yang, Yilin He, Fengyan Cao, Jiali Yao, Pengpeng Ding, Liang Gao, Tianqing Jia, Jinyang Liang, Zhenrong Sun, Lihong V. Wang. Single-shot compressed ultrafast photography: a review[J]. Advanced Photonics, 2020, 2(1): 014003

    [6] Jiaji Li, Alex Matlock, Yunzhe Li, Qian Chen, Chao Zuo, Lei Tian. High-speed in vitro intensity diffraction tomography[J]. Advanced Photonics, 2019, 1(6): 066004

    [7] Xiao Wang, Yufeng Qian, JingJing Zhang, Guangdong Ma, Shupeng Zhao, RuiFeng Liu, Hongrong Li, Pei Zhang, Hong Gao, Feng Huang, Fuli Li. Learning to recognize misaligned hyperfine orbital angular momentum modes[J]. Photonics Research, 2021, 9(4): B81

    [8] Weihao Wang, Xing Zhao, Zhixiang Jiang, Ya Wen. Deep learning-based scattering removal of light field imaging[J]. Chinese Optics Letters, 2022, 20(4): 041101

    Meng Lyu, Hao Wang, Guowei Li, Shanshan Zheng, Guohai Situ. Learning-based lensless imaging through optically thick scattering media[J]. Advanced Photonics, 2019, 1(3): 036002
    Download Citation