• Acta Optica Sinica
  • Vol. 37, Issue 4, 428001 (2017)
Cheng Baozhi1、2、*, Zhao Chunhui3, Zhang Lili2、3, and Zhang Jianpei1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/aos201737.0428001 Cite this Article Set citation alerts
    Cheng Baozhi, Zhao Chunhui, Zhang Lili, Zhang Jianpei. Joint Spatial Preprocessing and Spectral Clustering Based Collaborative Sparsity Anomaly Detection for Hyperspectral Images[J]. Acta Optica Sinica, 2017, 37(4): 428001 Copy Citation Text show less
    References

    [1] Reed I S, Yu X. Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1990, 38(10): 1760-1770.

    [2] Kwon H, Nasrabadi N M. Kernel RX-algorithm: a nonlinear anomaly detector for hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(2): 388-397.

    [3] Banerjee A, Burlina P, Diehl C. A support vector method for anomaly detection in hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(8): 2282-2291.

    [4] Chen Derong, Gong Jiulu, He Guanglin, et al. A RFS-SVDD algorithm for hyperspectral global anomaly detection[J]. Journal of Astronautics, 2010, 31(1): 228-232.

    [5] Chen Y, Nasrabadi N M, Tran T D. Sparse representation for target detection in hyperspectral imagery[J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(3): 629-640.

    [6] Zhao Chunhui, Li Xiaohui, Zhu Haifeng. Hyperspectral imaging target detection algorithm based on spatial 4 neighborhoods for sparse respresentation[J]. Journal of Harbin Engineering University, 2013, 34(9): 1171-1178.

    [7] Yuan Z Z, Sun H, Ji K F, et al. Local sparsity divergence for hyperspectral anomaly detection[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(10): 1697-1701.

    [8] Xu Y, Wu Z B, Li J, et al. Anomaly detection in hyperspectral images based on low-rank and sparse representation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(4): 1990-2000.

    [9] Li J Y, Zhang H Y, Zhang L P, et al. Hyperspectral anomaly detection by the use of background joint sparse representation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(6): 2523-2533.

    [10] Peng Z M, Gurram P, Kwon H, et al. Sparse kernel learning-based feature selection for anomaly detection[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(3): 1698-1716.

    [11] Tang Yidong, Huang Shucai, Ling Qiang, et al. Adaptive kernel collaborative representation anomaly detection for hyperspectral imagery[J]. High Power Laser and Particle Beams, 2015, 27(9): 091008.

    [12] Huang Yuancheng, Zhong Yanfei, Zhao Yehe, et al. Joint blind unmixing and sparse representation for anomaly detection in hyperspectral image[J]. Geomatics and Information Science of Wuhan University, 2015, 40(9): 1144-1150.

    [13] Zhang Lili, Zhao Chunhui, Cheng Baozhi. A joint kernel collaborative representation based approach for anomaly target detection of hyperspectral images[J]. Journal of Optoelectronics·Laser, 2015, 26(11): 2154-2161.

    [14] Zhao Chunhui, Jing Xiaohao, Li Wei. Hyperspectral image target detection algorithm based on StOMP sparse representation[J]. Journal of Harbin Engineering University, 2015, 36(7): 992-996.

    [15] Song Xiangfa, Jiao Licheng. Classification of hyperspectral remote sensing image based on sparse representation and spectral information[J]. Journal of Electronics & Information Technology, 2012, 34(2): 268-272.

    [16] Zortea M, Plaza A. Spatial preprocessing for end member extraction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(8): 2679-2693.

    [17] Luxburg U V. A tutorial on spectral clustering[J]. Statistics and Computing, 2007, 17(4): 395-416.

    [18] Cai Xiaoyan, Dai Guanzhong, Yang Libin. Survey on spectral clustering algorithms[J]. Computer Science, 2008, 35(7): 14-18.

    [19] Zheng Xiumeng, Chen Fucai, Huang Ruiyang. Research on collaborative recommendation algorithms based on parallel spectral clustering[J]. Journal of University of Science and Technology of China, 2016, 46(1): 82-86.

    [20] Chang C I, Jiao X L, Wu C C, et al. Component analysis based unsupervised linear spectral mixture analysis for hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(11): 4123-4137.

    [21] Gao G. A parzen-window-kernel-based CFAR algorithm for ship detection in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(3): 557-561.

    [22] Zou J Y, Li W, Du Q. Sparse representation-based nearest neighbor classifiers for hyperspectral imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(12): 2418-2422.

    [23] Zhang H Y, Zhai H, Zhang L P, et al. Spectral-spatial sparse subspace clustering for hyperspectral remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(6): 3672-3684.

    [24] Du B, Zhao R, Zhang L P, et al. A spectral-spatial based local summation anomaly detection method for hyperspectral images[J]. Signal Processing, 2016, 124: 115-131.

    [25] Ye Zhen, Bai Lin, Nian Yongjian. Hyperspectral image classification algorithm based on gabor feature and locality-preserving dimensionality reduction[J]. Acta Optica Sinica, 2016, 36(10): 1028003.

    [26] Xue Peng, Wang Zhibin, Zhang Rui, et al. Highly efficient measurement technology based on hyper-spectropolarimetric imaging[J]. Chinese J Lasers, 2016, 43(8): 0811001.

    CLP Journals

    [1] Ye Zhen, Bai Lin. Hyperspectral Image Classification Based on Principal Component Analysis and Local Binary Patterns[J]. Laser & Optoelectronics Progress, 2017, 54(11): 111006

    Cheng Baozhi, Zhao Chunhui, Zhang Lili, Zhang Jianpei. Joint Spatial Preprocessing and Spectral Clustering Based Collaborative Sparsity Anomaly Detection for Hyperspectral Images[J]. Acta Optica Sinica, 2017, 37(4): 428001
    Download Citation