• Laser & Optoelectronics Progress
  • Vol. 55, Issue 8, 82203 (2018)
Liu Xueru and Xue Changxi
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop55.082203 Cite this Article Set citation alerts
    Liu Xueru, Xue Changxi. Optimization of Molding Process Parameters of Chalcogenide Glass Based on Finite Element Simulation[J]. Laser & Optoelectronics Progress, 2018, 55(8): 82203 Copy Citation Text show less
    References

    [1] Wang X H, Xue J Q, Tao H Z, et al. Researching and developing on sulphureous series glass material[J]. Development Guide to Building Materials, 2003(2): 28-31.

    [2] Shu C L, Tian A L, Hang L X, et al. Modern optics manufacturing technology[M]. Beijing: National Defense Industry Press, 2008: 317-322.

    [3] Zhou T F, Zhou Q, Xie J Q, et al. Surface defect analysis on formed chalcogenide glass Ge22Se58As20 lenses after the molding process[J]. Applied Optics, 2017, 56(30): 8394-8402.

    [4] Yin S H, Jin S, Zhu K J, et al. Stress analysis of compression molding of aspherical glass lenses using finite element method[J]. Opto-Electronic Engineering, 2010,37 (10): 111-115.

    [5] Ni J J, Fan Y F, Chen W H. Simulation study of molding of aspherical optical glass lens[J]. Laser & Optoelectronics Progress, 2013, 50(3): 032201.

    [6] Fu X H, Jiang H Y, Zhang J, et al. Preparation of short and medium wave infrared anti-reflective coating based on chalcogenide glass[J]. Chinese Journal of Lasers, 2017, 44(9): 0903002.

    [7] Zhou T F, Yan J W, Masuda J, et al. Investigation on shape transferability in ultraprecision glass molding press for microgrooves[J]. Precision Engineering, 2011, 35(2): 214-220.

    [8] Zhou T F, Yan J W, Masuda J, et al. Investigation on the viscoelasticity of optical glass in ultraprecision lens molding process[J]. Journal of Materials Processing Technology, 2009, 209(9): 4484-4489.

    [9] Zhou T F, Yan J W, Kuriyagawa T. Evaluating the viscoelastic properties of glass above transition temperature for numerical modeling of lens molding process[J]. Proceedings of SPIE, 2007, 6624: 662403.

    [10] Zhang Y T. Theory of thermo-viscoelasticity[M]. Tianjin: Tianjin University Press, 2002: 1-15.

    [11] Guo D Z, Ren R B. Mechanics of layered viscoelastic systems[M]. Harbin: Harbin Institute of Technology Press, 2001: 24-34.

    [12] Jian Z Y, Zheng C, Chang F E, et al. Effect of composition on characteristic temperature and properties of GeXSe90-XSb10 glass[J]. Journal of Xi′an Technological University, 2009, 29 (1): 52-55.

    [13] Dai S X, Chen H G, Li M Z, et al. Chalcogenide glasses and their infrared optical applications[J]. Infrared and Laser Engineering, 2012, 41(4): 847-852.

    [14] Luo S J, Huang F Y, Zhan D J, et al. Development of chalcogenide glasses for infrared thermal imaging system[J]. Laser & Infrared, 2010, 40(1): 9-13.

    [15] Xue G Q. Research on homogeneity and molding process of chalcogenide glasses[D]. Shannxi: Xi′an Technology University, 2016.

    [16] Li C H, Wang L, Gan Y L, et al. Structural analysis of GexAsySe1-x-y chalcogenide glass thin-films by Raman spectroscopy[J]. Laser & Optoelectronics Progress, 2016, 53(2): 023101.

    [17] Qian G Q,Tang G W,Qian Q, et al. Study on mid-infrared spectral properties of Ho3+/Yb3+ co-doped fluorogermanate glasses[J]. Acta Optica Sinica, 2016, 36(6): 0616002.

    Liu Xueru, Xue Changxi. Optimization of Molding Process Parameters of Chalcogenide Glass Based on Finite Element Simulation[J]. Laser & Optoelectronics Progress, 2018, 55(8): 82203
    Download Citation