• Laser & Optoelectronics Progress
  • Vol. 59, Issue 16, 1617004 (2022)
Lihao Lin, Jianbing Yi*, Feng Cao, and Wangsheng Fang
Author Affiliations
  • School of Information Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi , China
  • show less
    DOI: 10.3788/LOP202259.1617004 Cite this Article Set citation alerts
    Lihao Lin, Jianbing Yi, Feng Cao, Wangsheng Fang. Non-Rigid Registration Algorithm of Lung Computed Tomography Image Based on Multi-Scale Parallel Fully Convolutional Neural Network[J]. Laser & Optoelectronics Progress, 2022, 59(16): 1617004 Copy Citation Text show less
    Flow chart of D-FCN lung image registration algorithm
    Fig. 1. Flow chart of D-FCN lung image registration algorithm
    Multi-scale parallel down-sampling module
    Fig. 2. Multi-scale parallel down-sampling module
    Lung feature maps at the same resolution and different scales. (a) Original image; (b) pooling core is 1; (c) pooling core is 2; (d) pooling core is 4
    Fig. 3. Lung feature maps at the same resolution and different scales. (a) Original image; (b) pooling core is 1; (c) pooling core is 2; (d) pooling core is 4
    Schematic diagram of dilated convolution. (a) Dilated factor is 1; (b) dilated factor is 2; (c) dilated factor is 3; (d) receptive fields with dilated factor of 1; (e) receptive fields with dilated factor of 2; (f) receptive fields with dilated factor of 3
    Fig. 4. Schematic diagram of dilated convolution. (a) Dilated factor is 1; (b) dilated factor is 2; (c) dilated factor is 3; (d) receptive fields with dilated factor of 1; (e) receptive fields with dilated factor of 2; (f) receptive fields with dilated factor of 3
    Pyramid dilated convolution module
    Fig. 5. Pyramid dilated convolution module
    Different feature maps at 1/8 resolution after three down sampling. (a) Large deformation feature map; (b) small deformation feature map
    Fig. 6. Different feature maps at 1/8 resolution after three down sampling. (a) Large deformation feature map; (b) small deformation feature map
    Adaptive channel attention module
    Fig. 7. Adaptive channel attention module
    Structure diagram of dilated FCN
    Fig. 8. Structure diagram of dilated FCN
    Original lung CT image and images under noise attack (axial surface). (a) Original image; (b) image with Gaussian noise; (c) image with salt and pepper noise
    Fig. 9. Original lung CT image and images under noise attack (axial surface). (a) Original image; (b) image with Gaussian noise; (c) image with salt and pepper noise
    Registration results of case1 in DIR-lab dataset (coronal plane). (a) Fixed image; (b) moving image; (c) deformed image; (d) difference before registration; (e) difference after registration
    Fig. 10. Registration results of case1 in DIR-lab dataset (coronal plane). (a) Fixed image; (b) moving image; (c) deformed image; (d) difference before registration; (e) difference after registration
    Box plot of target registration errors obtained by proposed algorithm from maximum inhalation to maximum exhalation in 10 cases in DIR-lab dataset
    Fig. 11. Box plot of target registration errors obtained by proposed algorithm from maximum inhalation to maximum exhalation in 10 cases in DIR-lab dataset
    Registration results of case1 in Creatis dataset (coronal plane). (a) Fixed image; (b) moving image; (c) deformed image; (d) difference before registration; (e) difference after registration
    Fig. 12. Registration results of case1 in Creatis dataset (coronal plane). (a) Fixed image; (b) moving image; (c) deformed image; (d) difference before registration; (e) difference after registration
    Box plot of target registration errors obtained by proposed algorithm from maximum inhalation to maximum exhalation in 6 cases of Creatis dataset
    Fig. 13. Box plot of target registration errors obtained by proposed algorithm from maximum inhalation to maximum exhalation in 6 cases of Creatis dataset

    Multi-scale parallel

    down sampling

    Pyramid dilated convolutionAdaptive channel attention

    Spatial

    regularization

    Data

    augmentation

    Target registration error(standard deviation)/mm
    3.45(2.19)
    2.77(1.77)
    2.60(1.97)
    1.96(1.29)
    1.90(1.34)
    1.71(1.20)
    Table 1. Target registration errors (standard deviations) of 300 expert points in DIR-lab dataset for each improvement step of proposed algorithm
    CaseDilated factors with 1,2,3,4Dilated factors with 1,2,4,8Dilated factors with 1,4,8,16Dilated factors with 1,8,16,24
    11.35(0.62)1.13(0.63)1.33(0.64)1.92(0.86)
    21.46(0.55)1.04(0.50)1.50(0.58)1.88(0.87)
    31.63(0.79)1.54(0.77)2.48(1.65)3.44(1.91)
    41.81(0.97)1.66(0.96)2.77(1.79)3.24(1.78)
    51.90(1.28)1.76(1.24)2.54(1.94)2.91(2.13)
    61.96(1.10)1.90(1.19)2.94(2.46)3.83(2.11)
    71.95(1.29)1.78(1.06)3.43(2.92)3.96(2.57)
    84.68(3.59)2.94(3.15)7.52(7.16)9.04(7.08)
    91.86(0.81)1.74(0.88)2.38(1.21)2.96(2.56)
    102.09(1.96)1.70(1.70)2.58(2.74)3.31(3.01)
    Mean2.06(1.29)1.71(1.20)2.95(2.31)3.64(2.48)
    Table 2. Target registration errors (standard deviations) of 300 expert points in DIR-lab dataset with different dilated factors in module
    CaseInitialEppenhofR-NetDLIRFCND-FCN
    13.89(2.78)1.65(0.89)1.50(1.05)1.27(1.16)1.15(0.61)1.13(0.63)
    24.34(3.90)2.26(1.16)1.74(1.24)1.20(1.12)1.13(0.64)1.04(0.50)
    36.94(4.05)3.15(1.63)2.36(1.04)1.48(1.26)1.60(0.94)1.54(0.77)
    49.83(4.86)4.24(2.69)3.13(1.60)2.09(1.93)2.10(1.38)1.66(0.96)
    57.48(5.51)3.52(2.23)2.92(1.70)1.95(2.10)2.26(1.79)1.76(1.24)
    610.89(6.97)3.19(1.50)2.95(1.83)5.16(7.09)2.93(2.69)1.90(1.19)
    711.03(7.43)4.25(2.08)3.52(2.00)3.05(3.01)3.45(3.17)1.78(1.06)
    814.99(9.01)9.03(5.08)5.52(3.40)6.48(5.37)8.60(7.52)2.94(3.15)
    97.92(3.98)3.85(1.86)3.22(1.57)2.10(1.66)2.53(1.82)1.74(0.88)
    107.30(6.35)5.07(2.31)3.07(2.15)2.09(2.24)2.56(2.07)1.70(1.70)
    Mean8.46(6.58)4.02(3.08)2.94(1.80)2.64(4.32)2.83(3.67)1.71(1.20)
    Table 3. Target registration errors (standard deviations) of 300 expert points in DIR-lab dataset of each registration algorithm
    CaseInitialRPMFCND-FCN
    16.34(2.95)1.84(1.56)1.40(0.57)1.34(0.47)
    214.04(7.20)3.88(2.91)3.81(3.06)1.74(1.10)
    37.67(5.05)2.69(2.66)1.85(1.38)1.57(0.87)
    47.33(4.89)1.89(1.85)1.68(1.48)1.64(0.98)
    57.09(5.10)2.54(2.24)1.73(1.22)1.26(0.84)
    66.68(3.68)2.01(1.49)1.56(1.09)1.45(0.81)
    Mean8.15(5.60)2.47(2.27)2.01(1.46)1.50(0.85)
    Table 4. Target registration errors (standard deviations) of 100 expert points in Creatis dataset of each registration algorithm
    AlgorithmTime /s
    RPM900.00
    R-Net≈1.00
    DLIR0.30±0.05
    FCN0.63
    D-FCN0.10±0.05
    Table 5. Running time of each algorithm to register a set of lung CT images
    Lihao Lin, Jianbing Yi, Feng Cao, Wangsheng Fang. Non-Rigid Registration Algorithm of Lung Computed Tomography Image Based on Multi-Scale Parallel Fully Convolutional Neural Network[J]. Laser & Optoelectronics Progress, 2022, 59(16): 1617004
    Download Citation