• Acta Optica Sinica
  • Vol. 44, Issue 13, 1319002 (2024)
Fang Zhou, Mingfu Zhang, Xiaodi Cheng, Yajun Zheng..., Xiaoyun Wang* and Yonggang Huang**|Show fewer author(s)
Author Affiliations
  • College of Physics and Electromechanical Engineering, Jishou University, Jishou416000, Hunan , China
  • show less
    DOI: 10.3788/AOS240628 Cite this Article Set citation alerts
    Fang Zhou, Mingfu Zhang, Xiaodi Cheng, Yajun Zheng, Xiaoyun Wang, Yonggang Huang. Effect of Chiral Media-Metal Core-Shell Structure and Its Shell Thickness on Optical Forces[J]. Acta Optica Sinica, 2024, 44(13): 1319002 Copy Citation Text show less
    References

    [1] Harris A B, Kamien R D, Lubensky T C. Molecular chirality and chiral parameters[J]. Reviews of Modern Physics, 71, 1745-1757(1999).

    [2] Wan H, Blomberg L G. Chiral separation of amino acids and peptides by capillary electrophoresis[J]. Journal of Chromatography A, 875, 43-88(2000).

    [3] Zukowski J, de Biasi V, Berthod A. Chiral separation of basic drugs by capillary electrophoresis with carboxymethylcyclodextrins[J]. Journal of Chromatography A, 948, 331-342(2002).

    [4] Jaggard D L, Mickelson A R, Papas C H. On electromagnetic waves in chiral media[J]. Applied Physics, 18, 211-216(1979).

    [5] Deutsche C W, Lightner D A, Woody R W et al. Optical activity[J]. Annual Review of Physical Chemistry, 20, 407-448(1969).

    [6] Rodger A, Nordén B[M]. Circular dichroism and linear dichroism(1997).

    [7] Mu X J, Wang J G, Duan G Q et al. The nature of chirality induced by molecular aggregation and self-assembly[J]. Spectrochimica Acta: Part A, Molecular and Biomolecular Spectroscopy, 212, 188-198(2019).

    [8] Mu X J, Chen X T, Wang J G et al. Visualizations of electric and magnetic interactions in electronic circular dichroism and Raman optical activity[J]. The Journal of Physical Chemistry A, 123, 8071-8081(2019).

    [9] Mohammadi E, Raziman T V, Curto A G. Nanophotonic chirality transfer to dielectric Mie resonators[J]. Nano Letters, 23, 3978-3984(2023).

    [10] Warning L A, Miandashti A R, McCarthy L A et al. Nanophotonic approaches for chirality sensing[J]. ACS Nano, 15, 15538-15566(2021).

    [11] Mohammadi E, Tsakmakidis K L, Askarpour A N et al. Nanophotonic platforms for enhanced chiral sensing[J]. ACS Photonics, 5, 2669-2675(2018).

    [12] Schuller J A, Barnard E S, Cai W S et al. Plasmonics for extreme light concentration and manipulation[J]. Nature Materials, 9, 193-204(2010).

    [13] Gramotnev D K, Bozhevolnyi S I. Plasmonics beyond the diffraction limit[J]. Nature Photonics, 4, 83-91(2010).

    [14] Baranov D G, Wersäll M, Cuadra J et al. Novel nanostructures and materials for strong light-matter interactions[J]. ACS Photonics, 5, 24-42(2018).

    [15] Cao A C, Ni H B, Ni B et al. Preparation and optical properties of self-assembled plasmonic biosensor based on silver nanoring[J]. Chinese Journal of Lasers, 49, 0313001(2022).

    [16] Zhang Q, Li J Q, Liu X G. Optical lateral forces and torques induced by chiral surface-plasmon-polaritons and their potential applications in recognition and separation of chiral enantiomers[J]. Physical Chemistry Chemical Physics: PCCP, 21, 1308-1314(2019).

    [17] Zhang Q, Li J Q, Liu X G et al. Optical screwdriving induced by the quantum spin Hall effect of surface plasmons near an interface between strongly chiral material and air[J]. Physical Review A, 97, 013822(2018).

    [18] Zhang Q, Li J Q, Liu X G et al. Dispersion, propagation, and transverse spin of surface plasmon polaritons in a metal-chiral-metal waveguide[J]. Applied Physics Letters, 110, 161114(2017).

    [19] Ashkin A. Acceleration and trapping of particles by radiation pressure[J]. Physical Review Letters, 24, 156-159(1970).

    [20] Ashkin A, Dziedzic J M. Optical trapping and manipulation of viruses and bacteria[J]. Science, 235, 1517-1520(1987).

    [21] Ashkin A. Optical trapping and manipulation of neutral particles using lasers[J]. Proceedings of the National Academy of Sciences of the United States of America, 94, 4853-4860(1997).

    [22] Deniz A A, Mukhopadhyay S, Lemke E A. Single-molecule biophysics: at the interface of biology, physics and chemistry[J]. Journal of the Royal Society: Interface, 5, 15-45(2008).

    [23] Greiner M, Mandel O, Esslinger T et al. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms[J]. Nature, 415, 39-44(2002).

    [24] Rodríguez J, Dávila Romero L C, Andrews D L. Optical binding in nanoparticle assembly: potential energy landscapes[J]. Physical Review A, 78, 043805(2008).

    [25] Gao D L, Ding W Q, Nieto-Vesperinas M et al. Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects[J]. Light, Science & Applications, 6, e17039(2017).

    [26] Dienerowitz M, Mazilu M, Dholakia K. Optical manipulation of nanoparticles: a review[J]. Journal of Nanophotonics, 2, 021875(2008).

    [27] Zhao X L, Zang S Q, Chen X Y. Stereospecific interactions between chiral inorganic nanomaterials and biological systems[J]. Chemical Society Reviews, 49, 2481-2503(2020).

    [28] Sun M Z, Wang X X, Guo X et al. Chirality at nanoscale for bioscience[J]. Chemical Science, 13, 3069-3081(2022).

    [29] Liu J J, Yang L, Qin P et al. Recent advances in inorganic chiral nanomaterials[J]. Advanced Materials, 33, e2005506(2021).

    [30] Johnson P B, Christy R W. Optical constants of the noble metals[J]. Physical Review B, 6, 4370-4379(1972).

    [31] Liaw J W, Lo W J, Kuo M K. Wavelength-dependent longitudinal polarizability of gold nanorod on optical torques[J]. Optics Express, 22, 10858-10867(2014).

    [32] Nieto-Vesperinas M, Chaumet P C, Rahmani A. Near-field photonic forces[J]. Philosophical Transactions of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 362, 719-737(2004).

    [33] Ploschner M. Optical forces near a nanoantenna[J]. Journal of Nanophotonics, 4, 041570(2010).

    [34] Paul D, Gehrke E[M]. Lehrbuch der Optik(1912).

    [35] Born M[M]. Optik(1972).

    [36] Kizel’ V A, Krasilov Y I, Burkov V I. Experimental studies of gyrotropy of crystals[J]. Soviet Physics Uspekhi, 17, 745-773(1975).

    [37] Klimov V V, Zabkov I V, Pavlov A A et al. Eigen oscillations of a chiral sphere and their influence on radiation of chiral molecules[J]. Optics Express, 22, 18564-18578(2014).

    [38] Zhang J C, Yu W X, Xiao F J et al. Tuning optical force of dielectric/metal core-shell placed above Au film[J]. Acta Physica Sinica, 69, 184206(2020).

    [39] Ji B Q, Li X Y, Wang Y H et al. Structure design of near-infrared and terahertz dual-band local field enhancement[J]. Laser & Optoelectronics Progress, 60, 0530004(2023).

    [40] Prodan E, Radloff C, Halas N J et al. A hybridization model for the plasmon response of complex nanostructures[J]. Science, 302, 419-422(2003).

    Fang Zhou, Mingfu Zhang, Xiaodi Cheng, Yajun Zheng, Xiaoyun Wang, Yonggang Huang. Effect of Chiral Media-Metal Core-Shell Structure and Its Shell Thickness on Optical Forces[J]. Acta Optica Sinica, 2024, 44(13): 1319002
    Download Citation