• Chinese Journal of Quantum Electronics
  • Vol. 38, Issue 6, 788 (2021)
Hao ZHOU1、2、*, Bo FANG1、2, Nana YANG1、2, Weixiong ZHAO1, Chunhui WANG1、3, and Weijun ZHANG1、3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461. 2021.06.006 Cite this Article
    ZHOU Hao, FANG Bo, YANG Nana, ZHAO Weixiong, WANG Chunhui, ZHANG Weijun. Development of virtually imaged phased array spectrometer in red band[J]. Chinese Journal of Quantum Electronics, 2021, 38(6): 788 Copy Citation Text show less
    References

    [1] Thorpe M J, Balslev-Clausen D, Kirchner M S, et al. Cavity-enhanced optical frequency comb spectroscopy: Application to human breath analysis [J]. Optics Express, 2008, 1(4): 2387-2397.

    [2] Klose A, Ycas G, Cruz F C, et al. Rapid, broadband spectroscopic temperature measurement of CO2 using VIPA spectroscopy [J]. Applied Physics B, 2016, 122(4): 78.

    [3] Zhao W, Fang B, Lin X, et al. Superconducting-magnet-based Faraday rotation spectrometer for real time insitu measurement of OH radicals at 106 molecule/cm3 level in an atmospheric simulation chamber [J]. Analytical Chemistry, 2018, 90(6): 3958-3964.

    [4] Wei N, Fang B, Zhao W, et al. Time-resolved laser-flash photolysis Faraday rotation spectrometer: A new tool for total OH reactivity measurement and free radical kinetics research [J]. Analytical Chemistry, 2020, 92(6): 4334-4339.

    [5] Zhao W X, Xu X Z, Fang B, et al. Development of an incoherent broad-band cavity-enhanced aerosol extinction spectrometer and its application to measurement of aerosol optical hygroscopicity [J]. Applied Optics, 2017, 5(11): E16.

    [6] Fang B, Zhao W X, Xu X Z, et al. Portable broadband cavity-enhanced spectrometer utilizing Kalman filtering: Application to real-time, in situ monitoring of glyoxal and nitrogen dioxide [J]. Optics Express, 2017, 25(22): 26910-26922.

    [7] Blanco M, Maspoch S, Villarroya I, et al. Geographical origin classification of petroleum crudes from near-infrared spectra of bitumens [J]. Applied Spectroscopy, 2001, 55(7): 834-839.

    [8] Payri F, Molina S, Martín J, et al. Influence of measurement errors and estimated parameters on combustion diagnosis [J]. Applied Thermal Engineering, 2006, 2(2-3): 226-236.

    [9] Wang L, Kassi S, Campargue A. Temperature dependence of the absorption spectrum of CH4 by high resolution spectroscopy at 81 K: (I) The region of the 2ν3 band at 1.66 μm [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2010, 111(9): 1130-1140.

    [10] Liu H C. Quantum dot infrared photodetector [J]. Optoelectronics Review, 2003, 1: 1-6.

    [11] Berthomieu C, Hienerwadel R. Fourier transform infrared (FTIR) spectroscopy [J]. Photosynthesis Research, 2009, 101(2): 157-170.

    [12] Bacsik Z, Mink J, Keresztury G. FTIR spectroscopy of the atmosphere. I. Principles and methods [J]. Applied Spectroscopy Reviews, 2004, 39(3): 295-363.

    [13] Kawata S. Instrumentation for Near-infrared Spectroscopy// Near-Infrared Spectroscopy [M]. Britain: John Wiley & Sons, 2001: 43-73.

    [14] Keliher P N, Wohlers C C. Echelle grating spectrometers in analytical spectrometry [J]. Analytical Chemistry, 1976, 48(3): 333A-340A.

    [15] Adler F, Thorpe M J, Cossel K C, et al. Cavity-enhanced direct frequency comb spectroscopy: Technology and applications [J]. Annual Review of Analytical Chemistry, 2010, 3(1): 175-205.

    [16] Shirasaki M. Large angular dispersion by a virtually imaged phased array and its application to a wavelength demultiplexer [J]. Optics Letters, 1996, 21(5): 366-368.

    [17] Xiao S J, Weiner A M, Lin C. A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory [J]. IEEE Journal of Quantum Electronics, 2004, 40(4): 420-426.

    [18] Xiao S J, Weiner A M. 2-D wavelength demultiplexer with potential for  1000 channels in the C-band [J]. Optics Express, 2004, 12(13): 2895-2902.

    [19] Diddams S A, Hollberg L, Mbele V. Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb [J]. Nature, 2007, 445(7128): 627-630.

    [20] Nugent-Glandorf L, Neely T, Adler F, et al. Mid-infrared virtually imaged phased array spectrometer for rapid and broadband trace gas detection [J]. Optics Letters, 2012, 37(15): 3285-3287.

    [21] Bjork B J, Bui T Q, Heckl O H, et al. Direct frequency comb measurement of OD+CO→DOCO kinetics [J]. Science, 2016, 354(6311): 444-448.

    [22] Roberts F C, Lewandowski H J, Hobson B F, et al. A rapid, spatially dispersive frequency comb spectrograph aimed at gas phase chemical reaction kinetics [J]. Molecular Physics, 2020, 118(16): e1733116.

    [23] Hébert N B, Scholten S K, White R T, et al. A quantitative mode-resolved frequency comb spectrometer [J]. Optics Express, 2015, 23(11): 13991-14001.

    [24] Fleisher A J, Bjork B J, Bui T Q, et al. Mid-infrared time-resolved frequency comb spectroscopy of transient free radicals [J]. The Journal of Physical Chemistry Letters, 2014, 5(13): 2241-2246.

    [25] Zhu X M, He J P. Numerical study of comb-based high-accuracy distance measurement utilizing VIPA interferometry [J]. Journal of Optics, 2019, 21(2): 025703.

    [26] Fiore A, Zhang J T, Shao P, et al. High-extinction virtually imaged phased array-based Brillouin spectroscopy of turbid biological media [J]. Applied Physics Letters, 2016, 108(20): 203701.

    [27] Thorpe M J, Balslev-Clausen D, Kirchner M S, et al. Cavity-enhanced optical frequency comb spectroscopy: Application to human breath analysis [J]. Optics Express, 2008, 1(4): 2387-2397.

    [28] Bao W, Ding Z H, Li P, et al. Orthogonal dispersive spectral-domain optical coherence tomography [J]. Optics Express, 2014, 22(8): 10081-10090.

    [29] Tan Z W, Chen Z W, Shen X X, et al. 2D spectral imaging based on a virtually imaged phased array [J]. Infrared and Laser Engineering, 2013, 42(Sup 1): 123-127.

    ZHOU Hao, FANG Bo, YANG Nana, ZHAO Weixiong, WANG Chunhui, ZHANG Weijun. Development of virtually imaged phased array spectrometer in red band[J]. Chinese Journal of Quantum Electronics, 2021, 38(6): 788
    Download Citation