• Laser & Optoelectronics Progress
  • Vol. 57, Issue 1, 011602 (2020)
Haihua Wu*, Yu Cai, Li Liu, Xueting Fan, and Lei Xing
Author Affiliations
  • Hubei Key Laboratory of Hydroelectric Machinery Design and Maintenance, College of Mechanical & Power Engineering, China Three Gorges University, Yichang, Hubei 443002, China
  • show less
    DOI: 10.3788/LOP57.011602 Cite this Article Set citation alerts
    Haihua Wu, Yu Cai, Li Liu, Xueting Fan, Lei Xing. Rapid Preparation and Properties of Multi-Layer Graphene Absorber Using Fused Deposition Modeling[J]. Laser & Optoelectronics Progress, 2020, 57(1): 011602 Copy Citation Text show less
    References

    [1] Song W L, Wang J, Fan L Z et al. Interfacial engineering of carbon nanofiber-graphene-carbon nanofiber heterojunctions in flexible lightweight electromagnetic shielding networks[J]. ACS Applied Materials & Interfaces, 6, 10516-10523(2014).

    [2] Zhao S C, Gao Z, Chen C Q et al. Alternate nonmagnetic and magnetic multilayer nanofilms deposited on carbon nanocoils by atomic layer deposition to tune microwave absorption property[J]. Carbon, 98, 196-203(2016).

    [3] Wen B, Cao M S, Lu M M et al. Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures[J]. Advanced Materials, 26, 3484-3489(2014).

    [4] Wang G Z, Gao Z, Tang S W et al. Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition[J]. ACS Nano, 6, 11009-11017(2012).

    [5] Yu Z X, Yao Z P, Zhang N et al. Electric field-induced synthesis of dendritic nanostructured α-Fe for electromagnetic absorption application[J]. Journal of Materials Chemistry A, 1, 4571-4576(2013).

    [6] Qiao L, Han X H, Gao B et al. Microwave absorption properties of the hierarchically branched Ni nanowire composites[J]. Journal of Applied Physics, 105, 053911(2009).

    [7] Li X A, Zhang B, Ju C H et al. Morphology-controlled synthesis and electromagnetic properties of porous Fe3O4 nanostructures from iron alkoxide precursors[J]. The Journal of Physical Chemistry C, 115, 12350-12357(2011).

    [8] Zhao B, Shao G, Fan B B et al. Synthesis of flower-like CuS hollow microspheres based on nanoflakes self-assembly and their microwave absorption properties[J]. Journal of Materials Chemistry A, 3, 10345-10352(2015).

    [9] Xia F, Liu J W, Gu D et al. Microwave absorption enhancement and electron microscopy characterization of BaTiO3 nano-torus[J]. Nanoscale, 3, 3860-3867(2011).

    [10] Li B P. Preparation and characterization of electromagnetic wave absorbing materials based on carbon[D]. Jinan: Shandong University(2013).

    [11] Li X H, Feng J, Du Y P et al. One-pot synthesis of CoFe2O4/graphene oxide hybrids and their conversion into FeCo/graphene hybrids for lightweight and highly efficient microwave absorber[J]. Journal of Materials Chemistry A, 3, 5535-5546(2015).

    [12] Zhou Y G, Li M Q, Pan X. Broadband absorber based on metamaterials[J]. Laser & Optoelectronics Progress, 54, 121602(2017).

    [13] Wang Y, Leng Y B, Dong L H et al. Design of tunable metamaterial absorber based on graphene-metal hybrid structure[J]. Acta Optica Sinica, 38, 0716001(2018).

    [14] Liang J J, Wang Y, Huang Y et al. Electromagnetic interference shielding of graphene/epoxy composites[J]. Carbon, 47, 922-925(2009).

    [15] Wang G S, Zhang X J, Wei Y Z et al. Polymer composites with enhanced wave absorption properties based on modified graphite and polyvinylidene fluoride[J]. Journal of Materials Chemistry A, 1, 7031-7036(2013).

    [16] Chen Z P, Xu C, Ma C Q et al. Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding[J]. Advanced Materials, 25, 1296-1300(2013).

    [17] Yuan B Q, Yu L M, Sheng L M et al. Graphene sheets/polyaniline composite for electromagnetic interference shielding[J]. Acta Materiae Compositae Sinica, 30, 22-26(2013).

    [18] Bai X, Zhai Y H, Zhang Y. Green approach to prepare graphene-based composites with high microwave absorption capacity[J]. The Journal of Physical Chemistry C, 115, 11673-11677(2011).

    [19] Li Q, Chen Z P, Yang X F et al. Research progress of microwave absorbing materials based on graphene[J]. Materials Review, 29, 28-35, 39(2015).

    [20] Chu H R. The research on microwave absorbing properties of graphene composites[D]. Dalian: Dalian University of Technology(2017).

    [21] Tang T M, Zhang Z, Deng J W et al. Research status and trend of 3D printing technology based on FDM[J]. New Chemical Materials, 43, 228-230, 234(2015).

    [22] Liu C Z. The preparation and properties of the multi-layer absorbing materials over broadband[D]. Beijing: Beijing Jiaotong University(2009).

    [23] Wu H H, Wu Z, Lü J W et al. Preparation and property of graphene/polylactic acid composite[J]. Materials for Mechanical Engineering, 41, 49-53(2017).

    [24] Wu H H, Wang J, Cai Y et al. Preparations and properties of graphene/PLA composite wire for 3D printing[J]. Carbon Techniques, 37, 61-65(2018).

    [25] Liu S H, Liu J M, Dong X L et al[M]. Electromagnetic wave shielding and absorbing materials(2007).

    [26] Wang Y, Wu X M, Zhang W Z et al. One-pot synthesis of MnFe2O4 nanoparticles-decorated reduced graphene oxide for enhanced microwave absorption properties[J]. Materials Technology, 32, 32-37(2017).

    [27] Cheng X Z, Liu J, Duan Y P[J]. Absorbing properties of PANI-graphene composites Safety & EMC, 2017, 59-61, 66.

    Haihua Wu, Yu Cai, Li Liu, Xueting Fan, Lei Xing. Rapid Preparation and Properties of Multi-Layer Graphene Absorber Using Fused Deposition Modeling[J]. Laser & Optoelectronics Progress, 2020, 57(1): 011602
    Download Citation