• Acta Optica Sinica
  • Vol. 39, Issue 10, 1001003 (2019)
Man Xu, Su Qiu*, Weiqi Jin, Jie Yang, and Hong Guo
Author Affiliations
  • Key Laboratory of Photoelectronic Imaging Technology and System(Beijing Institute of Technology), Ministry of Education, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
  • show less
    DOI: 10.3788/AOS201939.1001003 Cite this Article Set citation alerts
    Man Xu, Su Qiu, Weiqi Jin, Jie Yang, Hong Guo. Radon Transform Detection Method for Underwater Moving Target Based on Water Surface Characteristic Wave[J]. Acta Optica Sinica, 2019, 39(10): 1001003 Copy Citation Text show less
    Water surface characteristic wave of underwater moving target
    Fig. 1. Water surface characteristic wave of underwater moving target
    Ship's wake and components of the wake. (a) Actual ship's wake; (b) geometric relationship of wake components
    Fig. 2. Ship's wake and components of the wake. (a) Actual ship's wake; (b) geometric relationship of wake components
    Surface waves with different wind speeds at water depth of 15 m. (a) v=9 m/s; (b) v=10 m/s; (c) v=11 m/s; (d) v=12 m/s; (e) v=13 m/s; (f) v=14 m/s; (g) v=15 m/s; (h) v=16 m/s; (i) v=17 m/s; (j) v=18 m/s; (k) v=20 m/s; (l) v=25 m/s
    Fig. 3. Surface waves with different wind speeds at water depth of 15 m. (a) v=9 m/s; (b) v=10 m/s; (c) v=11 m/s; (d) v=12 m/s; (e) v=13 m/s; (f) v=14 m/s; (g) v=15 m/s; (h) v=16 m/s; (i) v=17 m/s; (j) v=18 m/s; (k) v=20 m/s; (l) v=25 m/s
    Three-dimensional sea surface simulation images under different wind speeds. (a) u19.5=3 m/s; (b) u19.5=5 m/s; (c) u19.5=7 m/s; (d) u19.5=10 m/s
    Fig. 4. Three-dimensional sea surface simulation images under different wind speeds. (a) u19.5=3 m/s; (b) u19.5=5 m/s; (c) u19.5=7 m/s; (d) u19.5=10 m/s
    Mixed wave simulation images of sea surface under different wind speeds. (a) u19.5=1 m/s; (b) u19.5=2 m/s; (c) u19.5=3 m/s; (d) u19.5=4 m/s; (e) u19.5=5 m/s; (f) <it
    Fig. 5. Mixed wave simulation images of sea surface under different wind speeds. (a) u19.5=1 m/s; (b) u19.5=2 m/s; (c) u19.5=3 m/s; (d) u19.5=4 m/s; (e) u19.5=5 m/s; (f)
    Geometric schematic diagram of Radon transform. (a) Radon space domain; (b) Radon transform domain
    Fig. 6. Geometric schematic diagram of Radon transform. (a) Radon space domain; (b) Radon transform domain
    Radon transform diagrams of symmetric lines. (a) Radon space domain of symmetric straight lines; (b) Radon transform domain of symmetric straight lines; (c) Radon space domain of parallel symmetric straight lines; (d) Radon transform domain of parallel symmetric straight lines
    Fig. 7. Radon transform diagrams of symmetric lines. (a) Radon space domain of symmetric straight lines; (b) Radon transform domain of symmetric straight lines; (c) Radon space domain of parallel symmetric straight lines; (d) Radon transform domain of parallel symmetric straight lines
    Peak points of simulated wake at different movement velocities in Radon transform domain. (a) v=9 m/s; (b) v=17 m/s; (c) v=25 m/s
    Fig. 8. Peak points of simulated wake at different movement velocities in Radon transform domain. (a) v=9 m/s; (b) v=17 m/s; (c) v=25 m/s
    Inverse-Radon transform results of simulated wake at different movement velocities. (a) v=9 m/s; (b) v=17 m/s; (c) v=25 m/s
    Fig. 9. Inverse-Radon transform results of simulated wake at different movement velocities. (a) v=9 m/s; (b) v=17 m/s; (c) v=25 m/s
    Radonspace domain and inverse-Radon images in the case of superimposed wave (u19.5=6 m/s,v=25 m/s). (a) Radon space domain image; (b) inverse-Radon image
    Fig. 10. Radonspace domain and inverse-Radon images in the case of superimposed wave (u19.5=6 m/s,v=25 m/s). (a) Radon space domain image; (b) inverse-Radon image
    Flow chart of extracting wake from complex sea based on Radon transform
    Fig. 11. Flow chart of extracting wake from complex sea based on Radon transform
    Standard images after preprocessing (u19.5=6 m/s). (a) v=9 m/s; (b) v=17 m/s; (c) v=25 m/s
    Fig. 12. Standard images after preprocessing (u19.5=6 m/s). (a) v=9 m/s; (b) v=17 m/s; (c) v=25 m/s
    Radon space domains of pre- and post-preprocessing images (u19.5=6 m/s). (a) v=9 m/s; (b) v=17 m/s; (c) v=25 m/s
    Fig. 13. Radon space domains of pre- and post-preprocessing images (u19.5=6 m/s). (a) v=9 m/s; (b) v=17 m/s; (c) v=25 m/s
    Double neighborhood window method for extracting peak points in Radon space domian. (a) v=9 m/s; (b) v=17 m/s; (c) v=25 m/s
    Fig. 14. Double neighborhood window method for extracting peak points in Radon space domian. (a) v=9 m/s; (b) v=17 m/s; (c) v=25 m/s
    Inverse-Radon transform images. (a) v=9 m/s; (b) v=17 m/s; (c) v=25 m/s
    Fig. 15. Inverse-Radon transform images. (a) v=9 m/s; (b) v=17 m/s; (c) v=25 m/s
    Wavelet transformation diagrams. (a) Wake section; (b) noise section
    Fig. 16. Wavelet transformation diagrams. (a) Wake section; (b) noise section
    Peak points in Radon space after decision. (a) v=9 m/s; (b) v=17 m/s; (c) v=25 m/s
    Fig. 17. Peak points in Radon space after decision. (a) v=9 m/s; (b) v=17 m/s; (c) v=25 m/s
    Wake extraction results after decision. (a) v=9 m/s; (b) v=17 m/s; (c) v=25 m/s
    Fig. 18. Wake extraction results after decision. (a) v=9 m/s; (b) v=17 m/s; (c) v=25 m/s
    Dataset typeTrue numberFalse numberAccuracy /%Recall /%Precision /%
    Train setPositive5921397.897.8598.5
    Negative9386
    Test setPositive129986.593.4887.76
    Negative1844
    Table 1. Model accuracy data for train set and test set
    Man Xu, Su Qiu, Weiqi Jin, Jie Yang, Hong Guo. Radon Transform Detection Method for Underwater Moving Target Based on Water Surface Characteristic Wave[J]. Acta Optica Sinica, 2019, 39(10): 1001003
    Download Citation