• Chinese Optics Letters
  • Vol. 19, Issue 3, 030201 (2021)
Wei Zhuang*, Yang Zhao, Shaokai Wang, Zhanjun Fang, Fang Fang, and Tianchu Li
Author Affiliations
  • National Institute of Metrology, Beijing 100029, China
  • show less
    DOI: 10.3788/COL202119.030201 Cite this Article Set citation alerts
    Wei Zhuang, Yang Zhao, Shaokai Wang, Zhanjun Fang, Fang Fang, Tianchu Li. Ultranarrow bandwidth Faraday atomic filter approaching natural linewidth based on cold atoms[J]. Chinese Optics Letters, 2021, 19(3): 030201 Copy Citation Text show less
    References

    [1] C. Fricke-Begemann, M. Alpers, J. Höffner. Daylight rejection with a new receiver for potassium resonance temperature lidars. Opt. Lett., 27, 1932(2002).

    [2] Q. Qian, Y. Hu, N. Zhao, M. Li, F. Shao, X. Zhang. Object tracking method based on joint global and local feature descriptor of 3D LIDAR point cloud. Chin. Opt. Lett., 18, 061001(2020).

    [3] J. Qian, Z. Zheng, M. Lei, C. Song, S. Huang, X. Gao. A compact complex-coefficient microwave photonic filter with continuous tunability. Chin. Opt. Lett., 17, 100601(2019).

    [4] J. Tang, Q. Wang, Y. Li, L. Zhang, J. Gan, M. Duan, J. Kong, L. Zheng. Experimental study of a model digital space optical communication system with new quantum devices. Appl. Opt., 34, 2619(1995).

    [5] J. S. Neergaard-Nielsen, B. M. Nielsen, H. Takahashi, A. I. Vistnes, E. S. Polzik. High purity bright single photon source. Opt. Express, 15, 7940(2007).

    [6] X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, H. Guo. Note: demonstration of an external-cavity diode laser system immune to current and temperature fluctuations. Rev. Sci. Instrum., 82, 086106(2011).

    [7] X. Zhang, Z. Tao, C. Zhu, Y. Hong, W. Zhuang, J. Chen. An all-optical locking of a semiconductor laser to the atomic resonance line with 1 MHz accuracy. Opt. Express, 21, 28010(2013).

    [8] Z. Tao, Y. Hong, B. Luo, J. Chen, H. Guo. Diode laser operating on an atomic transition limited by an isotope 87Rb Faraday filter at 780 nm. Opt. Lett., 40, 4348(2015).

    [9] J. Keaveney, W. J. Hamlyn, C. S. Adams, I. G. Hughes. A single-mode external cavity diode laser using an intra-cavity atomic Faraday filter with short-term linewidth < 400 kHz and long-term stability of < 1 MHz. Rev. Sci. Instrum., 87, 095111(2016).

    [10] P. Chang, T. Shi, S. Zhang, H. Shang, D. Pan, J. Chen. Faraday laser at Rb 1529 nm transition for optical communication systems. Chin. Opt. Lett., 15, 121401(2017).

    [11] W. Zhuang, J. Chen. Active Faraday optical frequency standard. Opt. Lett., 39, 6339(2014).

    [12] J. Menders, K. Benson, S. H. Bloom, C. S. Liu, E. Korevaar. Ultranarrow line filtering using a Cs Faraday filter at 852 nm. Opt. Lett., 16, 846(1991).

    [13] Y. Wang, S. Zhang, D. Wang, Z. Tao, Y. Hong, J. Chen. Nonlinear optical filter with ultranarrow bandwidth approaching the natural linewidth. Opt. Lett., 37, 4059(2012).

    [14] D. J. Dick, T. M. Shay. Ultrahigh-noise rejection optical filter. Opt. Lett., 16, 867(1991).

    [15] X. Xue, Z. Tao, Q. Sun, Y. Hong, W. Zhuang, B. Luo, J. Chen, H. Guo. Faraday anomalous dispersion optical filter with a single transmission peak using a buffer-gas-filled rubidium cell. Opt. Lett., 37, 2274(2012).

    [16] B. Luo, L. Yin, J. Xiong, J. Chen, H. Guo. Signal intensity influences on the atomic Faraday filter. Opt. Lett., 43, 2458(2018).

    [17] Z. Tao, M. Chen, Z. Zhou, B. Ye, J. Zeng, H. Zheng. Isotope 87Rb Faraday filter with a single transmission peak resonant with atomic transition at 780 nm. Opt. Express, 27, 13142(2019).

    [18] B. Yin, T. Shay. A potassium Faraday anomalous dispersion optical filter. Opt. Commun., 94, 30(1992).

    [19] Y. Zhang, X. Jia, Z. Ma, Q. Wang. Potassium Faraday optical filter in line-center operation. Opt. Commun., 194, 147(2001).

    [20] H. Chen, C. Y. She, P. Searcy, E. Korevaar. Sodium-vapor dispersive Faraday filter. Opt. Lett., 18, 1019(1993).

    [21] L. D. Turner, V. Karaganov, P. J. O. Teubner, R. E. Scholten. Sub-Doppler bandwidth atomic optical filter. Opt. Lett., 27, 500(2002).

    [22] W. Zhuang, Y. Hong, Z. Gao, C. Zhu, J. Chen. Ultranarrow bandwidth nonlinear Faraday optical filter at rubidium D2 transition. Chin. Opt. Lett., 12, 101204(2014).

    [23] G. Labeyrie, C. Miniatura, R. Kaiser. Large Faraday rotation of resonant light in a cold atomic cloud. Phys. Rev. A, 64, 033402(2001).

    [24] J. Nash, F. A. Narducci. Linear magneto-optic rotation in a cold gas. J. Mod. Opt., 50, 2667(2003).

    [25] B. Zheng, H. Cheng, Y. Meng, L. Xiao, J. Wan, L. Liu. Observation of Faraday rotation in cold atoms in an integrating sphere. Chin. Phys. Lett., 31, 073701(2014).

    [26] K. Pandey, C. C. Kwong, M. S. Pramod, D. Wilkowski. Linear and nonlinear magneto-optical rotation on the narrow strontium. Phys. Rev. A, 93, 053428(2016).

    CLP Journals

    [1] Dianqiang Su, Xiateng Qin, Yuan Jiang, Kaidi Jin, Zhonghua Ji, Yanting Zhao, Liantuan Xiao, Suotang Jia. Dark state atoms trapping in a magic-wavelength optical lattice near the nanofiber surface[J]. Chinese Optics Letters, 2022, 20(2): 020201

    Data from CrossRef

    [1] Tiantian Shi, Duo Pan, Wei Zhuang, Xiaolei Guan, Jianxiang Miao, Jia Zhang, Jingbiao Chen. Active Optical Clock Based on Laser Cooling of Alkali-metal Atoms. 2021 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFCS), 1(2021).

    Wei Zhuang, Yang Zhao, Shaokai Wang, Zhanjun Fang, Fang Fang, Tianchu Li. Ultranarrow bandwidth Faraday atomic filter approaching natural linewidth based on cold atoms[J]. Chinese Optics Letters, 2021, 19(3): 030201
    Download Citation