• Matter and Radiation at Extremes
  • Vol. 5, Issue 3, 035201 (2020)
Feng Wang1、*, Shaoen Jiang1, Yongkun Ding2, Shenye Liu1, Jiamin Yang1, Sanwei Li1, Tianxuan Huang1, Zhurong Cao1, Zhenghua Yang1, Xin Hu1, Wenyong Miao1, Jiyan Zhang1, Zhebin Wang1, Guohong Yang1, Rongqing Yi1, Qi Tang1, Longyu Kuang1, Zhichao Li1, Dong Yang1, Yulong Li1, Xiaoshi Peng1, Kuan Ren1, and Baohan Zhang1
Author Affiliations
  • 1Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang, China
  • 2Institute of Applied Physics and Computational Mathematics, China Academy of Engineering Physics, Beijing, China
  • show less
    DOI: 10.1063/1.5129726 Cite this Article
    Feng Wang, Shaoen Jiang, Yongkun Ding, Shenye Liu, Jiamin Yang, Sanwei Li, Tianxuan Huang, Zhurong Cao, Zhenghua Yang, Xin Hu, Wenyong Miao, Jiyan Zhang, Zhebin Wang, Guohong Yang, Rongqing Yi, Qi Tang, Longyu Kuang, Zhichao Li, Dong Yang, Yulong Li, Xiaoshi Peng, Kuan Ren, Baohan Zhang. Recent diagnostic developments at the 100 kJ-level laser facility in China[J]. Matter and Radiation at Extremes, 2020, 5(3): 035201 Copy Citation Text show less
    References

    [1] O. Landen, J. Lindl, J. Edwards, E. Moses. Review of the National Ignition Campaign 2009–2012. Phys. Plasmas, 21, 020501(2014).

    [2] D. T. Casey, O. A. Hurricane, P. M. Celliers, C. Cerjan, D. A. Callahan. Fuel gain exceeding unity in an inertially confined fusion implosion. Nature, 506, 343(2014).

    [3] X. Xie, W. Huo, K. Lan, J. Liu, Z. Li. Progress in octahedral spherical hohlraum study. Matter Radiat. Extremes, 1, 8(2016).

    [4] V. N. Goncharov, T. C. Sangster, E. M. Campbell, P. B. Radha, S. P. Regan. Laser-direct-drive program: Promise, challenge, and path forward. Matter Radiat. Extremes, 2, 37(2017).

    [5] L. Hao, W. L. Shang, K. Woo, S. X. Hu, R. Betti et al. Electron shock ignition of inertial fusion targets. Phys. Rev. Lett., 119, 195001(2017).

    [6] W. L. Shang, R. Betti, S. P. Regan, C. Stoeckl, T. C. Sangster et al. Properties of hot-spot emission in a warm plastic-shell implosion on the OMEGA laser system. Phys. Rev. E, 98, 033210(2018).

    [7] R. Betti, O. A. Hurricane. Inertial-confinement fusion with lasers. Nat. Phys., 12, 435(2016).

    [8] T. J. B. Collins, K. S. Anderson, M. Lafon, R. Betti, R. Epstein. Direct-drive–ignition designs with mid-Z ablators. Phys. Plasmas, 22, 032703(2015).

    [9] Y. Ding, J. Yang, F. Wang, S. Jiang, S. Liu. Experimental progress of inertial confinement fusion based at the ShengGuang-III laser facility in China. Nucl. Fusion, 59, 032006(2019).

    [10] Y. Mei, H. Wei, T. Xu, F. Wang, X. Peng. A full aperture backscattering light diagnostic system installed on the Shenguang-III prototype laser facility. Plasma Sci. Technol., 16, 567-570(2014).

    [11] X. S. Peng, F. Wang, D. Yang, H. Y. Wei, T. Xu et al. Characteristics study of the backscattering light on Shenguang-III prototype. Acta Opt. Sin., 34, 0314004(2014).

    [12] Y. Ding, L. Zhang, H. Li, Z. Lin, L. Jing. Demonstration of enhancement of x-ray flux with foam gold compared to solid gold. Nucl. Fusion, 56, 036006(2016).

    [13] D. A. Callahan, S. W. Haan, J. D. Lindl, D. S. Clark, J. D. Salmonson. Point design targets, specifications, and requirements for the 2010 ignition campaign on the national ignition facility. Phys. Plasmas, 18, 051001(2011).

    [14] D. A. Callahan, N. B. Meezan, O. A. Hurricane, M. J. Edwards, P. K. Patel et al. Indirect drive ignition at the national ignition facility. Plasma Phys. Controlled Fusion, 59, 014021(2017).

    [15] J. Grun, E. A. McLean, S. P. Obenschain, B. H. Ripin. Uniformity of laser-driven, ablatively accelerated targets. Phys. Rev. Lett., 46, 1402(1981).

    [16] E. A. McLean, R. R. Whitlock, J. A. Stamper, H. R. Griem, S. H. Gold. Preheat studies for foils accelerated by ablation due to laser irradiation. Phys. Rev. Lett., 45, 1246(1980).

    [17] R. Fabbro, B. Faral, J. P. Romain, F. Cottet. Simple measurement of the velocity of planar laser accelerated targets with stepped double-foil technique. Opt. Commun., 49, 352(1984).

    [18] C. Thomas, E. L. Dewald, N. Meezan, S. Hunter, L. Divol. Hot electron measurements in ignition relevant Hohlraums on the National Ignition Facility. Rev. Sci. Instrum., 81, 10D938(2010).

    [19] J. J. Lee, M. Hohenberger, N. E. Palmer, F. Albert, T. Döppner et al. Time-resolved measurements of the hot-electron population in ignition-scale experiments on the National Ignition Facility (invited). Rev. Sci. Instrum., 85, 11D501(2014).

    [20] P. M. Bell, D. L. Bleuel, J. A. Caggiano, D. K. Bradley, J. D. Kilkenny. The National Ignition Facility diagnostic set at the completion of the National Ignition Campaign, September 2012. Fusion Sci. Technol., 69, 420(2016).

    [21] P. M. Bell, J. P. Holder, D. K. Kalantar, J. R. Kimbrough, D. K. Bradley. Standard design for National Ignition Facility x-ray streak and framing cameras. Rev. Sci. Instrum., 81, 10E530(2010).

    [22] S. M. Glenn, D. K. Bradley, C. G. Brown, L. R. Benedetti, P. M. Bell. Crosstalk in x-ray framing cameras: Effect on voltage, gain, and timing (invited). Rev. Sci. Instrum., 83, 10E135(2012).

    [23] G. Stone, C. Hagmann, N. Izumi, S. Glenn, D. Hey. Experimental study of neutron induced background noise on gated x-ray framing cameras. Rev. Sci. Instrum., 81, 10E515(2010).

    [24] E. Foerster, I. Uschmann, K. Gaebel. x-ray microscopy of laser-produced plasmas with the use of bent crystals. Laser Part. Beams, 9, 135(1991).

    [25] O. L. Landen, T. W. Barbee, J. A. Koch, P. Celliers, L. B. Da Silva. High-energy x-ray microscopy techniques for laser-fusion plasma research at the National Ignition Facility. Appl. Opt., 37, 1784(1998).

    [26] S. M. Lane, K. A. Nugent, R. A. Lerche, R. J. Ellis, D. Ress. Neutron imaging of laser fusion targets. Science, 241, 956(1988).

    [27] M. Su, B. Yu, T. X. Huang, B. L. Chen, W. Jiang et al. Design of diagnostic system for neutron penumbral imaging based on Shenguang-III facility. High Power Laser Part. Beams, 25, 2604(2013).

    [28] W. Theobald, C. Stoeckl, J. P. Knauer, T. C. Sangster, V. Y. Glebov. The National Ignition Facility neutron time-of-flight system and its initial performance (invited). Rev. Sci. Instrum., 81, 10D325(2010).

    [29] M. J. Rosenberg, H. G. Rinderknecht, N. Sinenian, M. G. Johnson, A. B. Zylstra. A novel particle time of flight diagnostic for measurements of shock- and compression-bang times in D3He and DT implosions at the NIF. Rev. Sci. Instrum., 83, 10D902(2012).

    [30] X.-Y. Zhan, Z.-F. Song, J.-B. Chen, Z.-J. Liu, Q. Tang. An improved method of unfolding neutron TOF spectrum for low ion temperature inertial confinement fusion. Chin. Phys. C, 38, 066201(2014).

    Feng Wang, Shaoen Jiang, Yongkun Ding, Shenye Liu, Jiamin Yang, Sanwei Li, Tianxuan Huang, Zhurong Cao, Zhenghua Yang, Xin Hu, Wenyong Miao, Jiyan Zhang, Zhebin Wang, Guohong Yang, Rongqing Yi, Qi Tang, Longyu Kuang, Zhichao Li, Dong Yang, Yulong Li, Xiaoshi Peng, Kuan Ren, Baohan Zhang. Recent diagnostic developments at the 100 kJ-level laser facility in China[J]. Matter and Radiation at Extremes, 2020, 5(3): 035201
    Download Citation